Asymmetric N-(3,3-diphenylpropyl)aminoalkyl esters of 4-aryl-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic acids with antihypertensive activity

Amedeo Leonardi^a, Gianni Motta^{a*}, Renzo Pennini^a, Rodolfo Testa^b, Giorgio Sironi^b, Alberto Catto^c, Alberto Cerri^d, Marco Zappa^e, Giorgio Bianchi^f, Dante Nardi^g

^aMedicinal Chemistry Department, Pharmaceutical R&D Division, Recordati S.p.A., Via M. Civitali 1, 20148 Milano, Italy ^bPharmacology Department, Pharmaceutical R&D Division, Recordati S.p.A., Via M. Civitali 1, 20148 Milano, Italy ^cPatent Department, Pharmaceutical R&D Division, Recordati S.p.A., Via M. Civitali 1, 20148 Milano, Italy ^dPrassis Istituto di Ricerche Sigma Tau S.p.A., Via Forlanini 3, 20019 Settimo Milanese, Italy ^eIstituto Biochimico Pavese Pharma S.p.A., Viale Certosa 10, 27100 Pavia, Italy ^fCrinos S.p.A., Piazza XX Settembre 2, 22079 Villa Guardia, Italy ^gVia Gulli 47, 20147 Milano, Italy

(Received 17 October 1997; accepted 4 February 1998)

Abstract — A series of asymmetric 4-aryl-1,4-dihydropyridine-3,5-dicarboxylates characterized by the presence of a 3,3-diphenyl-propylamino moiety in one of the ester groups were synthesized. They exhibited remarkable antihypertensive activity in spontaneously hypertensive rats as well as affinity for the 1,4-dihydropyridines binding site labelled by ³*H*-nitrendipine in the calcium channel. Introduction of this bulky and lipophilic amine confers to the whole series an elevated level of antihypertensive activity and a long duration of action, a structure-dependent modulation of the activity being found only in the subset characterized by the presence of a branched propylene bridge between the ester and the amino groups. The presence of the amino group is essential for oral activity. Out of this series, compound **9u** (Rec 15/2375-lercanidipine) was selected for clinical development and obtained marketing authorization as an antihypertensive in several countries. © Elsevier, Paris

1,4-dihydropyridine / antihypertensive / calcium antagonist / Rec 15 / 2375 / lercanidipine / calcium entry blocker

1. Introduction

The presently available drugs classified as calcium antagonists (calcium entry blockers) are largely employed in a number of cardiovascular diseases, in particular hypertension and angina [1, 2]. The possibility of extending their use to other therapeutical indications, such as cerebral insufficiency and vasospasm, migraine, hypertrophic cardiomyopathy, ventricular and supraventricular tachyarrhytmia, atherosclerosis and others contributes to maintain an elevated interest for these agents [3–7].

With regard to their structure, calcium antagonists can be roughly divided into two main groups: (a) the 4-aryl-1,4-dihydropyridine-3,5-dicarboxylic acid esters,

The dihydropyridines attracted the interest of many medicinal chemists, because of their high potency and selectivity of action, and many modifications of the original structure of nifedipine have been carried out, leading to new active compounds [11, 12].

Among the performed modifications, the introduction of bulky, lipophilic aralkylaminoalkyl chains as one of the two esterifying groups at position 3 or 5, led to the discovery of new, very potent calcium antagonists. The first compound of this type, nicardipine [13] is widely used as antianginal and antihypertensive. Other analogues, namely barnidipine [14], benidipine [15] and manidipine [16], recently entered the market or are in advanced clinical trials, such as NKY-722 [17] and palonidipine [18] (see *figure 1*).

and related derivatives, and (b) compounds containing one, or more, aryl moieties bearing a basic side chain as the essential active structure, such as verapamil, diltiazem, bepridil, cinnarizine and prenylamine [8–10].

^{*}Correspondence and reprints

Figure 1. Selected basic and lipophilic calcium-antagonists.

Following this approach, our group investigated new esters of 2,6-dimethyl-4-aryl-1,4-dihydropyridine-3,5-dicarboxylic acid in which one estereal group represents a *N*-(3,3-diphenylpropyl)aminoalkyl moiety, which are reported here (*table I*).

The 3,3-diphenylpropylamino chain was chosen as a bulky, lipophilic group with the aim of improving the duration of action and also because it is present in other calcium antagonists such as prenylamine [19] and fendiline [20] (see *figure 1*).

Other structural variations were carried out, namely modification of the aryl group, of the non-basic ester chain and of the alkyl bridge between the carboxy and the amino functions, with the aim of possibly optimizing the pharmaco-toxicological properties of this series of compounds.

Table I. Alkyl N-[diphenylalkyl]aminoalkyl 4-aryl-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates 9a.

Compound	R	Ar	Alk	R_1	R_2	Method	Yield (%)	Eluents for base purification
9a	CH ₃	2-NO ₂ -C ₆ H ₄	(CH ₂) ₂	CH ₃	Н	A	34 ^b	CHCl ₃ -EtOAc (100:0 to 97:3)
9b	CH ₃	3-NO ₂ -C ₆ H ₄	(CH ₂) ₂	CH ₃	H	Α	40	CHCl ₃ -EtOAc (85:15 to 1:1)
9с	CH ₃	2,3-Cl ₂ -C ₆ H ₃	(CH ₂) ₂	CH ₃	Н	Α	40°	CHCl ₃ -EtOAc (4:1 to 3:2)
9d	CH ₃	4-benzofurazanyl	$(CH_2)_2$	CH ₃	H	A	32	CHCl ₃ -EtOAc (100:0 to 97:3)
9e	CH ₃	$3-NO_2-C_6H_4$	(CH ₂) ₂	Н	Н	A	38	CHCl ₃ -EtOAc (4:1 to 1:1)
9 f d	CH ₃	$3-NO_2-C_6H_4$	$(CH_2)_2$	CH ₃	CH ₃	A	47	CHCl ₃ -EtOAc (100:0 to 85:15 to 0:100)
9g	C_2H_5	3-NO ₂ -C ₆ H ₄	$(CH_2)_2$	CH ₃	Н	A	55	CHCl ₃ -EtOAc (100:0 to 7:3)
9h	$(CH_3)_2CH$	$3-NO_2-C_6H_4$	$(CH_2)_2$	CH ₃	Н	A	85	tol-EtOAc (4:1 to 3:2)
9i	(CH ₃) ₂ CHCH ₂	$3-NO_2-C_6H_4$	(CH ₂) ₂	CH ₃	Н	Α	50	tol-EtOAc (3:1)
9j	CH ₃ (CH ₂) ₂ O(CH ₂) ₂	$3-NO_2-C_6H_4$	(CH ₂) ₂	CH ₃	Н	A	59	tol-EtOAc (9:1 to 7:3)
9k	CH ₃	$3-NO_2-C_6H_4$	$(CH_2)_3$	CH_3	Н	Α	35	CHCl ₃ -EtOAc (100:0 to 2:3)
91 ^d	CH ₃	3-NO ₂ -C ₆ H ₄	(CH ₂) ₃	CH ₃	CH_3	A	48	CHCl ₃ -EtOAc (9:1 to 3:1)
9m	CH ₃	3-NO2-C6H4	$(CH_2)_4$	CH ₃	Н	A	53e	CHCl ₃ -Me ₂ CO (95:5 to 7:3)
9n	CH ₃	$3-NO_2-C_6H_4$	CH(CH ₃)CH ₂	CH ₃	H	Α	35	CHCl ₃ -EtOAc (95:5 to 7:3)
9n ₁ f						B_1	23 ^b	CHCl ₃ -EtOAC (10:0 to 1:1)
9n ₂ g						\mathbf{B}_1	29e	CHCl ₃ -EtOAc (10:0 to 1:1)
90	(CH ₃) ₂ CH	3-NO ₂ -C ₆ H ₄	CH(CH ₃)CH ₂	CH ₃	Н	С	34	tol-EtOAc (9:1 to 0:10)
9p	$CH_3(CH_2)_2O(CH_2)_2$	3-NO ₂ -C ₆ H ₄	CH(CH ₃)CH ₂	CH ₃	Н	C	30e	tol-EtOAc (4:1 to 1:1)
9q	CH ₃ (CH ₂) ₂ OCH ₂ C(CH ₃) ₂	$3-NO_2-C_6H_4$	CH(CH ₃)CH ₂	CH_3	Н	C	25e	tol-EtOAc (9:1 to 1:1)
9r	(CH ₃) ₂ CHCH ₂	2,3-Cl ₂ -C ₆ H ₃	CH(CH ₃)CH ₂	CH ₃	Н	Α	5	CHCl ₃ -EtOAc (4:1 to 3:2)
9s	CH ₃ (CH ₂) ₂ O(CH ₂) ₂	2,3-Cl ₂ -C ₆ H ₃	CH(CH ₃)CH ₂	CH ₃	Н	C	25	tol-EtOAc (4:1 to 1:1)
9t	CH ₃	$3-NO_2-C_6H_4$	$C(CH_3)_2CH_2$	Н	H	B_2	54	CH ₂ Cl ₂ -EtOAc (7:3)
9ս	CH ₃	3-NO ₂ -C ₆ H ₄	$C(CH_3)_2CH_2$	CH ₃	Н	B_2	44	CH ₂ Cl ₂ -EtOAc (100:0 to 70:30)
9u;						C	36e	petroleum ether-Me ₂ CO (90:10 to 85:15)
9v	CH ₃	4-NO ₂ -C ₆ H ₄	$C(CH_3)_2CH_2$	CH_3	Н	B_2	57	CHCl ₃ -Me ₂ CO (100:0 to 97:3)
9w	C_2H_5	3-NO ₂ -C ₆ H ₄	$C(CH_3)_2CH_2$	CH_3	H	C	35	petroleum ether-EtOAc (4:1 to 3:2)
9 _X	(CH ₃) ₂ CH	3-NO ₂ -C ₆ H ₄	C(CH ₃) ₂ CH ₂	CH_3	H	С	11e	CHCl ₃ -Me ₂ CO (100:0 to 95:5)
9у	CH ₃ (CH ₂) ₂ O(CH ₂) ₂	3-NO ₂ -C ₆ H ₄	$C(CH_3)_2CH_2$	CH ₃	Н	C	35e	CHCl ₃ -Me ₂ CO (100:0 to 94:6)
9z	CH ₃ (CH ₂) ₂ OCH ₂ C(CH ₃) ₂	3-NO ₂ -C ₆ H ₄	$C(CH_3)_2CH_2$	CH ₃	Н	C	40 ^e	CHCl ₃ -Me ₂ CO (100:0 to 92:8)
9a a	CH ₃	2,3-Cl ₂ -C ₆ H ₃	$C(CH_3)_2CH_2$	CH_3	Н	C	17 ^h	CHCl ₃ -Me ₂ CO (100:0 to 95:5)
9ab	CH ₃	3-NO ₂ -C ₆ H ₄	$CH(CH_3)(CH_2)_2$	CH_3	Н	$\mathbf{B}_{\mathbf{i}}$	51 ^b	CHCl ₃ -EtOAc (10:0 to 0:10)
9ac	CH ₃	3-NO ₂ -C ₆ H ₄	$C(CH_3)_2(CH_2)_2$	CH_3	Н	B_2	73	petroleum ether-Me ₂ CO (7:3 to 6:4)
9ad	CH ₃	3-NO ₂ -C ₆ H ₄	CH ₂ C(CH ₃) ₂ CH ₂	CH ₃	Н	\mathbf{B}_2	60e	petroleum ether-EtOAc (7:3)
9ae	CH ₃	2,3-Cl ₂ -C ₆ H ₃	CH ₂ C(CH ₃) ₂ CH ₂	CH ₃	Н	B_2	34	petroleum etherEtOAc (9:1 to 3:1)
9af	CH ₃	3-NO ₂ C ₆ H ₄	$(CH_2)_2C(CH_3)_2$	CH ₃	Н	\mathbf{B}_2	61 ^e	petroleum ether-EtOAc (4:1 to 3:1)
9ag	CH ₃	3-NO ₂ -C ₆ H ₄	C(CH ₃) ₂ CH ₂	CH ₃	= O	\mathbf{B}_2	64	petroleum ether-EtOAc (3:2)

^aCompounds **9a-f** were isolated as HCl salts; $^{\text{b}}$ -**H**₂O; $^{\text{c}}$ -0.6H₂O; $^{\text{d}}$ 1,*N*-dimethyl-3,3-diphenylpropylamine used for the synthesis of these compounds was prepared according to the literature [21]; $^{\text{c}}$ -0.5H₂O; $^{\text{f}}$ diastereomer at lower R_{F} ; $^{\text{g}}$ diastereomer at higher R_{F} ; $^{\text{b}}$ -0.75H₂O.

2. Chemistry

The asymmetric monobasic diesters of 4-aryl-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylic acids, listed in *table I*, were synthesized by three different roomes become in Sigure 2.

The haloalkyl acetoacetates 2, prepared starting from the corresponding haloalkyl alcohols 1, were reacted with the suitable aldehydes 3 to give the haloalkyl 2-arylideneacetoacetates 4 as mixtures of the E/Z isomers. The suitable commercially available or synthesized aminocrotonates 5 were condensed with 4 to give the alkyl haloalkyl 4-aryl-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates 6. For the preparation of intermediate 6e it was more convenient to carry out the esterification of 1,4-binydro-2,6-bimethyl-3-methoxycarbonyl-4-(3-nitrophenyl)pyridine-5carboxylic acid with 1,4-dibromobutane in anhydrous EMF and in the presence of K₂CO₃. The haloderivatives 6 were then used to perform the alkylation of the diphenylalkylamines 8 by the general method A to give the desired compounds 9a-n,r.

The 3-alkoxycarbonyl-4-aryl-1,4-dihydro-2,6-dimethylpyridine-5-carboxylic acids 7 were used to esterify the N-(hydroxyalkyl)-diphenylalkylamines 10 by $method\ B$, alternatively using a condensation agent (DCC in the presence of DMAP) to give the final compounds 9n,ab (method B_1) or via acyl chloride formation to give 9t-v,ac-ag (method B_2).

Following the third pathway, some aminoalkylalcohols 10 were reacted with diketene to give the corresponding N-(diphenylalkyl)aminoalkyl acetoacetates 11 which were condensed with 3 to give the corresponding arylidene derivatives 12. Subsequent cyclization with the suitable aminocrotonates 5 by method C gave the desired compounds 90-q,s,u,w-aa.

In steps i and vi diketene can be successfully replaced by its acetone adduct (2,2,6-trimethyl-1,3-dipxin-4-one) by operating a ingener temperatures. In the reaction between intermediates 7 and 10 (method II), the formation of dicyclohexylcarboditmide adduct occurred readily, but a large reaction time was needed in order to obtain the esters 9 in acceptable yields.

For the preparation of 2,3-dichlorobenzylidene-acctoacetates 4 and 12, longer reaction times with respect to the other arylidene derivatives or heating with CF₃COOH/CHCl₃ was needed in order to accomplish the elimination reaction. Attempts to synthesize intermediates 12 in refluxing C₆H₆ in the presence of piperidinium acetate as catalyst resulted less satisfactory than using excess HCl in CHCl₃. This might be due to basic-assisted hydrolysis of the aminobenzylidene derivatives formed. Sometimes, the re-formation of small amounts of the corresponding 10 and 3 (5 to 10%) was noticed, after prolonged contact with

water or silica gel of these compounds in the base form.

In some cases, the HCl-catalyzed condensation to 12 afforded also minor amounts of the addition compound of HCl to the benzylidene double bond. The animodecholis 18th, were synthesized by specific routes, as depicted in figures 3 and 4.

Addition of N-(3,3-diphenylpropyl)methylamine to 3-buten-2-one gave the 3-animoletone 13 that was C-alkylated via methylmagnesium iodide, yielding the desired aminoalcohol 10e. Intermediate 13 was also reduced with NaBH₄ to give the corresponding aminoalcohol 10d.

In figure 4, esterification of 3-methylcrotonic acid with ethanol gave the corresponding ester 14; the addition seaction of the commercially available 3,3-diphenylpropylamine to this ester gave the 3-amino-butyrate 15. Alkylation of this secondary amine with methyl iodide gave the tert-aminoester 16 that was finally reduced with LiAlH₄ yielding 10g.

Some of the 1,4-dihydropyridines 9 were isolated as hydrochloride salt in form of amorphous solids, because of difficulties in obtaining crystals. When the NMR spectrum of compound 9u and some other 9 derivatives having only the C₄ chiral center, in the 'HCl form were recorded in CDCl₃ solution at high field (200–300 MHz) complex spectra were obtained, suggesting the presence of two different species, probably due to intramolecular interactions. This will be the subject of a separate publication.

The structure and main characteristics of the intermediates utilized are shown in *tables II–VIII*. The 'final' compounds are listed in *table I*.

3. Pharmacology

Radioreceptor binding studies were performed with ³H-nitrendipine on rat brain membrane, according to the method previously reported [27]). These compounds were assayed as solutions in ethanol and the affinity for the channel is reported as IC₁₀ (concentration inhibiting by 18% the binding of ³B-nitrendpine). In table IX.

The antihypertensive activity of new and known compounds was tested in 12–16 weeks old SHR/Crl/BR rats (4 animals per dose). Test compounds were administered by gavage as suspensions in 0.5% methocel in saline. Conscious animals were prewarmed at 37 °C for 15 min before tail-cuff recording of systolic blood pressure [28]. The antihypertensive effects at peak time were expressed as ED₂₅ (dose lowering by 25% the systolic blood pressure). The time of peak effect was generally about 3 h, with few exceptions reported in table IX.

Indicative acute toxicity was determined after intraperitoneal and oral administration of test

Figure 2. Synthesis of final 1,4-dihydropyridines 9.

i) Et₂O, -5/+3°C ii) CH₃MgI, Et₂O, -5/+10°C, r.t. iii) NaBH₄, MeOH, 0°C

Figure 3. Synthetic pathway for aminoalcohol 10d and 10e.

$$CH_3 O C_2H_5$$

$$I4$$

$$C_6H_5 O C_2H_5$$

$$I5$$

$$C_6H_5 O C_2H_5$$

$$I6$$

$$C_6H_5 O C_2H_5$$

$$I6$$

$$C_6H_5 O C_2H_5$$

$$I6$$

$$C_6H_5 O C_2H_5$$

$$III C_6H_5 O C_4H_5$$

$$C_6H_5 O C_5H_5$$

$$C_6H_5 O C_5H_5$$

$$C$$

Figure 4. Synthetic pathway for aminoalcohol 10g.


compounds, as suspension in 0.5% methocel in saline, to Crl/CD-I-(ICR)BR mice (4 animals per dose). For the interesting molecules, indicative acute toxicity was also determined in Sprague Dawley rats by intravenous administration of solutions in aqueous propylene glycol (4 animals per dose). The mortality rate was recorded over a 14-day period.

4. Results and discussion

As shown in table IX, most compounds exhibited antihypertensive activity and affinity for the calcium

channel labelled by 3 H-nitrendipine comparable or better than the reference 1,4-DHPs. A trend to correlate was found between the in vitro and in vivo results (see *figure 5*), taking into account that the oral administration route was used for testing the antihypertensive activity (Y = 5.49 - 0.53X; r = 0.723; n = 31).

With regard to the structural modifications performed, the following comments can be made. With regard to the aromatic group at position 4 of the 1,4-DHP ring, Ar, the 3-nitrophenyl group showed the most desirable profile for pharmacological and toxicological properties.

Figure 5. Correlation between affinity for the calcium channel binding site (pIC_{50}) and the antihypertensive activity in SHR (log ED₂₅). Points shown as closed circles were excluded from computation.

In agreement with the known SAR studies on this class of compounds [8, 29–31], the introduction of the 4-nitrophenyl group (compound **9v**) caused loss of activity. A tendency to a longer duration of the anti-hypertensive effect was noticed for compounds bearing the 2,3-dichlorophenyl group, in particular for **9c**.

As far as the non-basic ester group R is concerned, in the subset where Alk is an ethylene bridge (compounds **9b**,**g**-**j**) ethyl, *i*-propyl and *i*-butyl showed the best antihypertensive potency, whereas methyl group proved in general more potent when the ethylene bridge was branched (compounds **9n**-**s**,**u**-**z**).

Derivatives with R = propoxyalkyl resulted, on an average, less toxic in mouse. Since this loss of toxicity upon oral administration was not paralleled by a decrease in toxic effects after i.v. administration in rat, it is possible that lower toxicity in mouse is actually due to lower bioavailability in this species. Changing a hydrogen atom for a methyl group at R_1 or R_2 did not substantially affect the pharmaco-toxicological activity.

With regard to the alkylene spacer Alk, the propylene bridge of **9k** proved the best among linear chains. Branching with one or two methyl groups at the oxygen-bonded carbon in the ethylene subset enhanced potency and, in some cases, reduced toxicity in the rat.

The diastereoselectivity found with the 2-propylene derivatives $9n_1$ and $9n_2$ confirms the ability of this structural element in modulating, directly or indirectly, the affinity for the 1,4-DHP site in the calcium

channel. This modulating role was more evident in the 1,3-propylene derivatives **9ac,ad,af**, where formal double methylation at position 2 of the chain afforded the most potent derivative in the series (**9ad**). Quite surprisingly, **9ac**, combining the desirable features of **9k** (linear propylene bridge) and of **9u** (C(CH₃)₂CH₂ in the bridge), proved significantly less potent than **9ad** and said analogues.

The absence of antihypertensive activity and toxic effects in the mouse seen with the 3,3-diphenylpropanamide derivative 9ag, in presence of a strong affinity for the calcium channel, prompted us to evaluate its antihypertensive effect upon intravenous administration in catheterized SHR following the protocol described in [32]. In this case a strong antihypertensive effect was noticed (ED₂₅ = 44 µg/kg, versus 16 µg/kg for 9u), pointing out a very low systemic absorption for this compound upon oral administration and suggesting that the presence of the amino group in the whole series influences more the bioavailability of these compounds than their affinity for the calcium channel.

Inspection of data obtained for the new 4-(3-nitrophenyl)-1,4-DHPs suggests that the introduction of the 3,3-diphenylpropylamino moiety confers to the whole series an elevated and fairly constant level of antihypertensive activity irrespective of the structural variations of the groups R and Alk, the only feature which generates real differences in in vivo and in vitro pharmacological activity being the position of the gem-dimethyl group when the alkylene bridge is a propyl chain (compounds **9ac,ad,af**). In addition, the presence of this bulky and lipophilic moiety confers the new molecules a delayed peak of the antihypertensive effect, associated to a longer duration, with regard to the less lipophilic nifedipine.

5. Conclusions

Compound **9u** (Rec 15/2375-lercanidipine) was selected for development and obtained marketing authorization in several countries as an antihypertensive. The main characteristics of this drug are the slow onset and long duration of its action, although in the presence of low plasma levels and short plasma half life [33]. This behaviour is explained with the high partition coefficient, measured both in *n*-octanol/acidic buffer (log P = 6.0, $pK_a' = 6.83$, see experimental protocols) and in artificial cardiac phospholipids membranes (log $K_{\text{plmem}} = 6.1$ at pH = 7.4) [34], which confers an elevated affinity for the lipidic bilayer of cells in the cardiovascular system.

Lercanidipine is also characterized by high vascular selectivity and absence of negative inotropic effects [35]. In agreement with the results obtained with most

chiral 1,4-dihydropyridines [36], (S)-lercanidipine proved to be the eutomer. The synthesis of lercanidipine enantiomers will be the subject of a separate publication. Full accounts on the pharmacological and clinical studies performed with lercanidipine are reported in references [37, 38].

6. Experimental protocols

6.1. Chemistry

Reagents, starting materials and solvents were purchased from commercial suppliers. Flash chromatography was performed on silica gel (Merck 70–230 mesh). Melting points were determined on a Buchi 535 apparatus and are uncorrected. Infrared (IR) spectra were obtained on a Perkin-Elmer 297 infrared spectrophotometer and were consistent with the structures. $^1\text{H-NMR}$ spectra were recorded on a Hitachi-Perkin Elmer R24A or on a Brucker AC 200. The chemical shifts (δ) are in ppm relative to tetramethylsilane. The purity of the compounds was checked by TLC (Merck silica gel 60, F254 0.25 mm). Analyses indicated by the symbols of the elements were within $\pm 0.4\%$ of the theoretical values.

6.2. Preparation of intermediates 1

6.2.1. 2-Methyl-1-propoxy-2-propanol 1a

0.1 g-atom (2.3 g) of sodium was added in small portions to 0.53 mol (32 g) of 1-propanol and the mixture was stirred until

sodium dissolution (1.5 h). The temperature was lowered to 80 °C and 0.1 mol (10.76 g) of 1-chloro-2-methyl-2-propanol was added dropwise in 30 min. The mixture was stirred at reflux temperature for 10 h then cooled to room temperature, filtered and the filtrate distilled at normal pressure; the fraction collected at 145–148 °C gave 27.7 g (52%) of pure compound. Anal. $C_7H_{16}O_2$ (C, H). 1H -NMR (CDCl₃): 3.5 (t, 2H, C–C-CH₂-O-C), 3.3 (s, 2H, O-CH₂-C-O), 2.65 (s, 1H, OH), 1.55 (m, 2H, C-CH₂-C-O), 1.25 (s, 6H, gem-CH₃s), 0.95 (t, 3H, CH₃-C-C-O).

6.3. Preparation of intermediates 2 (table II)

6.3.1. 2-Chloro-1-methylethyl acetoacetate 2c

0.42 mol (35.4 g) of diketene was added in 45 min to 0.40 mol (41.4 g) of 1-chloro-2-propanol stirred at 80 °C. The mixture was heated at 100 °C and after 45 min the temperature spontaneously rose to 120 °C for 20 min. Heating was continued at 100 °C for additional 3 h then the mixture was cooled to room temperature and distilled in vacuo. The fraction collected at 113–115 °C/16 mmHg gave 61.6 g (86%) of the pure compound. Anal. $C_7H_{11}CIO_3$ (C, H, Cl). 1H -NMR (CDCl₃): 4.85–5.35 (m, 1H, CH), 3.4–3.7 (m, 4H, CH₂COO and CH₂Cl), 2.25 (s, 3H, CH₃–CO–C), 1.35 (d, 3H, COO–C–CH₃). The product contained about 8% of its enolic form whose main visible peaks are as follows: 12.2 (s, OH), 1.95 (s, CH₃–C=).

6.3.2. 3-Chloropropyl acetoacetate 2d

0.315 mol (26.5 g) of diketene was added in 45 min to 0.3 mol (28.35 g) of 3-chloropropanol stirred at 70 °C. During the addition the temperature was gradually raised to 120 °C and then was kept at 100 °C for 3 h. After cooling to room

Table II. Alkyl and haloalkyl acetoacetates **2**. Acetoacetates **2e**—**h** were reacted with ammonia to give the corresponding 3-aminocrotonates **5a**—**d** (*table IV*).

		, ,		
Compound	Alk-X	Yield (%)	B.p. (°C)/mmHg	Anal.
2a	(CH ₂) ₂ Cl	89	115–117/19 ^a	_
2 b	$(CH_2)_2Br$	61	83-88/0.4 ^b	_
2c	CH(CH ₃)CH ₂ Cl	86	113–115/16	C, H, Cl
2d	(CH ₂) ₃ Cl	82	125–131/15	C, H, Cl
2e	CH(CH ₃) ₂	84	73-75/15 ^c	_
2f	CH ₂ CH(CH ₃) ₂	83	93-95/15 ^d	_
2g	(CH2)2O(CH2)2CH3	92	125–128/16 ^e	_
2h	$C(CH_3)_2CH_2O(CH_2)_2CH_3$	88	123-125/16	C, H

 $^{^{}a}100-102$ °C/10 mmHg [13]; $^{b}124-127$ °C/20 mmHg [22]; $^{c}66-69$ °C/10 mmHg [23]; $^{d}100$ °C/22 mmHg [24]; $^{e}130-137$ °C/20 mmHg [13].

temperature the mixture was distilled in vacuo and the fraction collected at 125–131 °C/15 mmHg gave 43.9 g (82%) of the pure compound. Anal. $C_7H_{11}ClO_3$ (C, H, Cl). ¹H-NMR (CDCl₃): 4.2 (t, 2H, OCH₂–C–C), 3.65 (t, 2H, O–C–C–CH₂Cl), 3.5 (s, 2H, COCH₂COO), 2.2 (s, 3H, CH₃CO), 2.05 (m, 2H, O–C–CH₂–C–Cl). A peak at 12.3 (OH) and a peak at 5.0 (C=CHCOO) were present, attributed to about 5% of the enolic form

6.3.3. 2-Methyl-1-propoxy-2-propyl acetoacetate 2h

0.347 mol (29.2 g) of diketene was dropped in 40 min into a stirred mixture of 0.316 mol (41.9 g) of 2-methyl-1-propoxy-2-propanol (1a) and 1 mmol (0.1 g) of triethylamine, preheated at 100 °C. Further heating lasted 4 h, without exceeding the temperature of 105 °C. After cooling to room temperature, the mixture was distilled in vacuo and the fraction collected at 123–125 °C/16 mmHg gave 60.6 (88%) of the pure compound. Anal. C₁₁H₂₀O₄ (C, H). ¹H-NMR (CDCl₃): 3.5 (s, 2H, COCH₂), 3.4 (t, 2H, O-CH₂-C-C), 3.35 (s, 2H, O-C-CH₂-O), 2.25 (s, 3H, CH₃-CO), 1.5 (m, 2H, O-C-CH₂-C), 1.45 (s, 6H, gem-CH₃s), 0.9 (t, 3H, O-C-C-C-CH₃).

6.4. Preparation of intermediates 3

6.4.1. Benzofurazan-4-carbaldehyde

A mixture of 0.01 mol (1.34 g) of 4-methylbenzofurazan [39] and 0.011 mol (1.21 g) of selenium dioxide was stirred at 160 °C for 8 h. After cooling to room temperature the mixture was crushed with EtOAc, the insoluble was removed by filtration and the filtrate evaporated to dryness in vacuo. The crude was purified by flash chromatography eluting with a CHCl₃-petroleum ether 9:1 mixture. Yield 82% (1.21 g), m.p. 108-109 °C after crystallization from cyclohexane. Anal.

 $C_7H_4N_2O_2$ (C, H, N). ¹H-NMR (CDCl₃): 10.1 (s, 1H, CHO), 8.4–7.5 (m, 3H, aromatics). This compound was also obtained in lower yield starting from 4-bromomethylbenzofurazan through a Sommelet reaction [39].

6.5. Preparation of intermediates 4 (table III)

6.5.1. 2-Chloro-1-methylethyl 2-(3-nitrobenzylidene)acetoacetate **4c**

A mixture of 0.08 mol (12.2 g) of 3-nitrobenzaldehyde and 0.08 mol (14.3 g) of 2-chloro-1-methylethyl acetoacetate 2c in 80 mL of toluene was saturated with HCl at 0/5 °C. The solution was kept two days at room temperature and after this period a stream of N_2 was bubbled to eliminate excess HCl. The solvent was evaporated in vacuo and the oil was dissolved into CH₂Cl₂, washed with H₂O until neutrality, dried over Na₂SO₄, filtered, and evaporated in vacuo to dryness. Crystallization from *i*-propanol gave 20.7 g (83%) of the pure compound (E/Z mixture). M.p. 95–96 °C. Anal. $C_{14}H_{14}CINO_5$ (C, H, N, Cl). 1 H-NMR (CDCl₃): 8.3–7.5 (m, 4H, aromatics), 7.55 (s, 1H, CH=C), 5.25 (m, 1H, COOCH), 3.55 (d, 2H, C-CH₂Cl), 2.45 (s, 3H, CH₃-CO-C), 1.36 (d, 3H, COO-C-CH₃).

6.5.2. 3-Chloropropyl 2-(3-nitrobenzylidene)acetoacetate 4d

A mixture of 0.17 mol (30.34 g) of 3-chloropropyl acetoacetate **2d** and 0.17 mol (25.7 g) of 3-nitrobenzaldehyde in 170 mL of toluene was treated as described for **4c**. The crude was purified by flash chromatography eluting with toluene. Yield 50.9 g (95%), m.p. 63–65 °C. Anal. C₁₄H₁₄ClNO₅ (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.50–7.50 (m, 5H, aromatics and CH=C), 4.45 (t, 2H, COOCH₂), 3.65 and 3.50 (2t, 2H, CH₂Cl of *E/Z* isomers), 2.50 (s, 3H, CH₃CO), 2.10 (m, 2H, COO-C-CH₂).

Table III. Haloalkyl 2-benzylideneacetoacetates 4 (E/Z mixtures).

Compound	Ar	Alk-X	Yield	M.p. (°C)	Anal.
4a	2-NO ₂ -C ₆ H ₄	(CH ₂) ₂ Cl	58	Oil ^a	
4b	$3-NO_2-C_6H_4$	(CH ₂) ₂ Cl	86	92–95 ^b	_
4c	$3-NO_2-C_6H_4$	CH(CH ₃)CH ₂ Cl	83	95–96	C, H, N, Cl
4d	$3-NO_2-C_6H_4$	(CH ₂) ₃ Cl	95	63–65	C, H, N, Cl
4e	$3-NO_2-C_6H_4$	$(CH_2)_2Br$	69	83–91	C, H, N, Br
4f	2,3-Cl ₂ -C ₆ H ₃	$(CH_2)_2Cl$	87	Oil	C, H, N, Cl
4 g	2,3-Cl ₂ -C ₆ H ₃	CH(CH ₃)CH ₂ CI	100	Oil	C, H, Cl
4h	4-benzofurazanyl	$(CH_2)_2Cl$	95	Oil	C, H, N, Cl

^aSample enriched in the isomer with higher R_F , m.p. 74–75 °C (*i*-PrOH) [25]; ^bsample crystallized from CCl₄, m.p. 94–97 °C (*i*-PrOH) [25].

6.5.3. 2-Bromoethyl 2-(3-nitrobenzylidene)acetoacetate 4e

A mixture of 0.055 mol (8.3 g) of 3-nitrobenzaldehyde, 0.055 mol (11.5 g) of 2-bromoethyl acetoacetate 2b and 55 mL of toluene was saturated with anhydrous HBr at 0/5 °C. The solution was kept at room temperature for 7 days, bubbled with a N_2 stream and evaporated to dryness. The solution was diluted with Et2O and washed with with H2O until neutrality; the organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated to dryness. The residue was dissolved into CHCl₃ (100 mL), added with trifluoroacetic acid (20 mL) and the solution refluxed for 20 h. After cooling to room temperature the solution was washed with H₂O until neutrality, dried over anhydrous Na₂SO₄ and evaporated to dryness in vacuo to give a crude (15.75 g) that was treated with boiling CCl₄ (300 mL). The insoluble was removed by filtration, the filtrate was evaporated to dryness and the residue washed with Et₂O (60 mL) to give 12.9 g (69%) of the pure compound. M.p. 83–91 °C. Anal. $C_{13}H_{12}BrNO_5$ (C, H, N, Br). ¹H-NMR (CDCl₃): 8.5–8.2 (m, 2H, 3-nitrophenyl- H_2 - H_4), 8.05–7.6 (m, 3H, 3-nitrophenyl-H₅-H₆ and CH=C), 4.65 (t, 2H, COOCH₂), 3.65 and 3.55 (2t, 2H, CH₂Br of E/Z isomers), 2.5 (s, 3H, CH₃CO).

6.5.4. 2-Chloroethyl 2-(2,3-dichlorobenzylidene)acetoacetate

A mixture of 0.1 mol (17.5 g) of 2,3-dichlorobenzaldehyde, 0.1 mol (16.45 g) of 2-chloroethyl acetoacetate **2a** and 100 mL of toluene was saturated with HCl at 0/3 °C and the solution was kept at room temperature for 7 days. After this period a stream of N₂ was bubbled to eliminate HCl, the solution was diluted with Et2O and washed with H2O until neutrality. The organic phase was dried over anhydrous Na₂SO₄ and evaporated in vacuo to give an oily residue (35 g) that was dissolved into CHCl₃ (230 mL), added with trifluoroacetic acid (35 mL) and the solution refluxed for 20 min. After cooling to room temperature the solution was washed with H₂O until neutrality, dried over anhydrous Na₂SO₄ and evaporated to dryness in vacuo to give 28.5 g (87%) of the pure compound as a thick oil. Anal. $C_{13}H_{11}Cl_3O_3$ (C, H, Cl). ¹H-NMR (CDCl₃): 7.9 and 7.8 (2s, 1H, CH=C of E/Z isomers), 7.6-7.1 (m, 3H, aromatics), 4.5–4.2 (m, 2H, COOCH₂), 3.8–3.4 (m, 2H, CH₂Cl), 2.45 and 2.2 (2s, 3H, CH₃CO of E/Z isomers).

6.5.5. 2-Chloro-1-methylethyl 2-(2,3-dichlorobenzylidene)acetoacetate 4g

A solution of 0.1 mol (17.5 g) of 2,3-dichlorobenzaldehyde in 70 mL of toluene was added at 20 °C to a solution of 0.1 mol (17.8 g) of 2-chloro-1-methylethyl acetoacetate 2c in 30 mL of toluene. The mixture was saturated with HCl at 0/3 °C and the solution was kept at room temperature for 7 days. After this period a stream of N₂ was bubbled to eliminate HCl, the solution was diluted with Et₂O and washed with H₂O until neutrality. The organic phase was dried over anhydrous Na₂SO₄ and evaporated in vacuo to give an oily residue that was dissolved in CHCl₃ (300 mL) and added with trifluoroacetic acid (35 mL), and the solution refluxed for 20 h. After cooling to room temperature the solution was washed with H2O until neutrality, dried over anhydrous Na₂SO₄ and evaporated to dryness in vacuo to give 33.5 g (100%) of the pure compound as a E/Z isomers mixture in form of a thick oil. A sample of this mixture was flash chromatographed eluting with toluene and the residue crystallized from cyclohexane to give the pure isomer melting at 63–65 °C. Anal. C₁₄H₁₃Cl₃O₃ (C, H, Cl). ¹H-NMR (CDCl₃): 7.9 (s, 1H, CH=C–CO), 7.7–7.1 (m, 3H, aromatics), 5.5–4.9 (m, 1H, COOCH), 3.5 (d, 2H, CH₂Cl), 2.5 (s, 3H, CH₃CO), 1.25 (d, 3H, COO-C-CH₃).

6.5.6. 2-Chloroethyl 2-(4-benzofurazanylmethylidene)acetoacetate 4h

A mixture of 0.1 mol (16.2 g) of 2-chloroethyl acetoacetate, 0.1 mol (14.8 g) of benzofurazan-4-carbaldehyde and 200 mL of CHCl₃ was saturated with anhydrous HCl at 0 °C. The solution was kept at room temperature for 7 days, bubbled with a N₂ stream and evaporated to dryness. The residue was dissolved in EtOAc and the solution was washed with diluted aqueous NaHCO3 solution followed by H2O; the organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated to dryness to give the oily pure compound, (TLC CHCl₃-EtOAc, 95:5). Yield 28 g (95%). This compound was directly used for the synthesis of the corresponding dihydropyridine **6g**. Anal. C₁₃H₁₁ClN₂O₄ (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.2–7.35 (m, 4H, $H_{5,6.7}$ of benzofurazanyl ring and CH=C), 3.0–2.7 and 2.7–2.35 (2m, 2H, CH₂Cl of *E/Z* isomers), 2.8–2.45 and 2.4–2.05 (2m, 2H, COOCH₂ of *E/Z* isomers), 2.55 and 2.2 (2s, 3H, CH_3 of E/Z isomers).

6.6. Preparation of intermediates 5 (table IV)

6.6.1. 2-Methyl-1-propoxy-2-propyl 3-aminocrotonate 5d A stream of anhydrous NH $_3$ (150 g) was bubbled in about 50 h into a solution of 0.05 mol (10.81 g) of 2-methyl-1propoxy-2-propyl acetoacetate 2h in 40 mL of CH₂Cl₂. During this time the temperature was not allowed to exceed 15 °C and at the end the mixture was diluted with 50 mL of CH₂Cl₂, dried over anhydrous Na₂SO₄ and evaporated to dryness in vacuo at room temperature to give 10.1 g (94%) of the oily compound, which in some preparations contained from 5 to 10% of the starting material. This product was used without further purification for the synthesis of final compound 9aa. Anal. C₁₁H₂₁NO₃ (C, H, N). ¹H-NMR (CDCl₃): 7.0-5.0 (bs, 2H, NH₂), 4.4 (s, 1H, CHCOO), 3.5 (s, 2H, COO-C-CH₂O), 3.4 (t, 2H, O–CH₂–C–C), 1.8 (s, 3H, CH₃–C=C), 1.8–1.1 (m, 2H, O–C–CH₂–C), 1.45 (s, 6H, gem-CH₃s), 0.9 (t, 3H, O-C-C-ČH₂).

6.7. Preparation of intermediates 6 (table V)

6.7.1. 2-Chloroethyl methyl 1,4-dihydro-2,6-dimethyl-4-(2nitrophenyl)pyridine-3,5-dicarboxylate 6a

A mixture of 0.075 mol (22.33 g) of 2-chloroethyl 2-(2nitrobenzylidene)acetoacetate 4a, 0.075 mol (8.90 g) of methyl 3-aminocrotonate and 60 mL of 2-propanol was stirred at reflux temperature for 3 h. After cooling to room temperature, the solvent was evaporated in vacuo and the residue was purified by flash chromatography eluting with CHCl₃. The collected pure fractions (TLC CHCl₃-EtOAc, 9:1) were pooled and the solid residue obtained after solvent evaporation was washed with *i*-Pr₂O to give 11.2 g (38%) of pure **6a**. M.p. 118-120 °C (*i*-Pr₂O). Anal. $C_{18}H_{19}ClN_2O_6$ (C, H, N, Cl). ¹H-NMR (CDCl₃): 7.8–7.0 (m, 4H, aromatics), 6.1 (bs, 1H, NH), 5.75 (s, 1H, CH), 4.25 (t, 2H, COOCH₂), 3.55 (t, 2H, CH₂Cl), 3.55 (s, 3H, CH₃O), 2.35 and 2.25 (2s, 6H, 2,6 CH₃s).

6.7.2. 2-Chloro-1-methylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate 6c

Same procedure as for 6a. Yield 64% (after column chromatography, eluting with CHCl₃ and washing with H₂O); m.p. 115–119 °C. Anal. $C_{19}H_{21}ClN_2O_6$ (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.1–7.2 (m, 4H, aromatics), 6.05 (bs, 1H, NH), 5.05 and 5.1 (2s, 1H, pyridine–CH), 4.2–3.8 (m, 1H, COOCH), 3.65 (s, 3H, CH₃O), 3.5 (dd, 2H, CH₂Cl), 2.35 (s, 6H, 2.6 CH₃s), 1.25 (dd, 3H, COO-C-CH₃).

Table IV. Alkyl 3-aminocrotonates 5.

Compound	R	Yield (%)	M.p. or b.p. (°C)/mmHg	Anal.
5a	CH(CH ₃) ₂	95	106-107/20 ^a	_
5b	CH ₂ CH(CH ₃) ₂	85	131/22 ^b	_
5c	(CH2)2O(CH2)2CH3	97	$\mathrm{Oil}^{\mathrm{c,d}}$	-
5 d	$C(CH_3)_2CH_2O(CH_2)_2CH_3$	94	Oil ^d	C, H, N

 $[^]a$ 102–103 °C/12 mmHg [23]; b 116–118 °C/17 mmHg [26]; °120 °C/0.7 mmHg [13]; d not distilled by us since the crude showed acceptable purity (tlc).

Table V. Alkyl haloalkyl 4-aryl-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates **6**.

Compound	R	Ar	Alk-X	Yield (%)	M.p. (°C)	Anal.
6a	CH ₃	2-NO ₂ –C ₆ H ₄	(CH ₂) ₂ Cl	38	118-120	C, H, N, Cl
6b	CH ₃	$3-NO_2-C_6H_4$	(CH ₂) ₂ Cl	62	136–138 ^a	_
6c	CH_3	$3-NO_2-C_6H_4$	CH(CH ₃)CH ₂ Cl	64	115–119	C, H, N, Cl
6d	CH ₃	$3-NO_2-C_6H_4$	(CH ₂) ₃ Cl	81	144–147	C, H, N, Cl
6e	CH_3	$3-NO_2-C_6H_4$	$(CH_2)_4Br$	84	124–125	C, H, N, Br
6f	CH_3	2,3-Cl ₂ -C ₆ H ₃	$(CH_2)_2Cl$	44	167–169	C, H, N, Cl
6g	CH_3	4-benzofurazanyl	(CH ₂) ₂ Cl	36	117–118	C, H, N, Cl
6h	CH ₃ CH ₂	$3-NO_2-C_6H_4$	$(CH_2)_2Cl$	67	160–162	C, H, N, Cl
6i	$(CH_3)_2CH$	$3-NO_2-C_6H_4$	(CH ₂) ₂ Cl	71	141-146 ^b	_
6 j	(CH ₃) ₂ CHCH ₂	$3-NO_2-C_6H_4$	$(CH_2)_2Cl$	69	155–157	C, H, N, Cl
6k ^c	(CH ₃) ₂ CHCH ₂	2,3-Cl ₂ -C ₆ H ₃	CH(CH ₃)CH ₂ Cl	48	Oil	C, H, N, Cl
61	$CH_3(CH_2)_2O(CH_2)_2$	$3-NO_2-C_6H_4$	(CH ₂) ₂ Cl	70	104–106	C, H, N, Cl

 $^{^{\}rm a}130{-}131~^{\rm o}C$ [23]; $^{\rm b}143{-}145~^{\rm o}C$ [23]; $^{\rm c}$ unstable to heating and silicagel.

6.7.3. 3-Chloropropyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate **6d**

The reaction was carried out as for **6a** but using ethanol, as reaction solvent, at reflux temperature for 6 h. The product crystallized from the reaction mixture. Yield 81%; m.p. 144–147 °C (EtOH). Anal. C₁₉H₂₁ClN₂O₆ (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.2–7.2 (m, 4H, aromatics), 6.5 (s, 1H, NH), 5.1 (s, 1H, CH), 4.2 (t, 2H, COOCH₂), 3.7 (s, 3H, CH₃O), 3.45 (t, 2H, CH₂Cl), 2.4 (s, 6H, 2,6 CH₃S), 2.05 (t, 2H, COO-C-CH₃-C).

6.7.4. 4-Bromobutyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate **6e**

A suspension of 0.03 mol (9.96 g) of 1,4-dihydro-2,6-dimethyl-5-methoxycarbonyl-4-(3-nitrophenyl)pyridin-3-carboxylic acid [40], 0.09 mol (19.43 g) of 1,4-dibromobutane, 0.015 mol (2.07 g) of anhydrous K₂CO₃ and 60 mL of anhydrous DMF was stirred at 50 °C for 2.5 h. After cooling to room temperature, the mixture was poured into 400 mL of H₂O, extracted with Et₂O, the organic layer washed with H₂O, dried over anhydrous Na₂SO₄ and evaporated to dryness in vacuo. The oily residue was purified by flash chromatography eluting with CHCl₃-EtOAc (100:0 to 97:3) gradient mixture, to give 11.75 g (84%) of the pure compound. M.p. 124–125 °C (*i*-PrOH or CCl₄). Anal. C₂₀H₂₃BrN₂O₆ (C, H, N, Br). ¹H-NMR (CDCl₃): 8.3–7.4 (m, 4H, aromatics), 6.45 (s, 1H, NH), 5.2 (s, 1H, CH), 4.3–4.0 (m, 2H, COOCH₂), 3.75 (s, 3H, OCH₃), 3.6–3.3 (m, 2H, CH₂Br), 2.4 (s, 6H, 2,6 CH₃s), 2.0–1.6 (m, 4H, O-C-CH₂CH₂-C).

6.7.5. 2-Chloroethyl methyl 4-(2,3-dichlorophenyl)-1,4-dihy-dro-2,6-dimethylpyridine-3,5-dicarboxylate **6f**

Same procedure as for **6a**. The reaction mixture was refluxed for 8 h. The crude crystallized from the reaction mixture and was purified by flash chromatography eluting with CHCl₃–EtOAc (100:0 to 95:5) gradient mixture. Yield 44%; m.p. 167–169 °C (*i*-PrOH). Anal. C₁₈H₁₈Cl₃NO₄ (C, H, N, Cl). ¹H-NMR (CDCl₃): 7.5–6.8 (m, 3H, aromatics), 6.05 (s, 1H, NH), 5.45 (s, 1H, CH), 4.25 (t, 2H, COOCH₂), 3.6 (s + t, 5H, CH₃O and CH₂Cl), 2.3 (s, 6H, 2,6 CH₃s).

6.7.6. 2-Chloroethyl methyl 4-(4-benzofurazanyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate **6g**

Same procedure as for **6a**. The reaction mixture was refluxed for 13 h and the crude was purified by flash chromatography eluting with CHCl₃–EtOAc (100:0 to 95:5) gradient mixture. The residue was washed with *i*-Pr₂O and dried in vacuo at 40 °C for 2 h. Yield 36%; m.p. 117–118 °C. Anal. C₁₈H₁₈ClN₃O₅ (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.0–7.1 (m, 3H, aromatics), 6.8 (s, 1H, NH), 5.6 (s, 1H, CH), 4.3 (t, 2H, COOCH₂), 3.7 (s, 3H, CH₃O), 3.65 (t, 2H, CH₂Cl), 2.3 (s, 6H, 2,6 CH₃S).

6.7.7. 2-Chloroethyl ethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate **6h**

Same procedure as for **6a**. The reaction was carried out in ethanol at reflux temperature for 7 h. Yield 67% (after column chromatography, eluent CHCl₃); m.p. 160–162 °C (*i*-PrOH). Anal. C₁₉H₂₁ClN₂O₆ (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.2–7.2 (m, 4H, aromatics), 6.35 (bs, 1H, NH), 5.1 (s, 1H, CH), 4.3 (t, 2H, COOCH₂–C–Cl), 4.08 (q, 2H, COOCH₂–C), 3.6 (t, 2H, CH₂Cl), 2.35 (s, 6H, 2,6 CH₃s), 1.2 (t, 3H, COO–C–CH₃).

6.7.8. 2-Chloroethyl 2-methylpropyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate **6j**

Same procedure as for **6a**. Yield 69% (after column chromatography, eluent CHCl₃); m.p. 155–157 °C (*i*-PrOH). Anal.

 $C_{21}H_{25}ClN_2O_6$ (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.1–7.2 (m, 4H, aromatics), 6.2 (s, 1H, NH), 5.05 (s, 1H, pyridine–CH), 4.25 (t, 2H, COOCH₂–C–Cl), 3.8 (d, 2H, COOCH₂–C–C), 3.6 (t, 2H, CH₂Cl), 2.3 (s, 6H, 2,6 CH₃s), 2.0–1.5 (m, 1H, *i*-butyl–CH), 0.95–0.85 (dd, 6H, gem-CH₃s).

6.7.9. 2-Chloro-1-methylethyl 2-methylpropyl 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate 6k Same procedure as for 6a. Yield 48% (after column chromatography, eluting with CHCl₃–EtOAc, 98:2). Anal. C₂₂H₂₆Cl₃NO₄ (C, H, N, Cl). ¹H-NMR (CDCl₃): 7.7–7.1 (m, 3H, aromatics) 6.4 (m, 1H, NH), 5.5 (s, 1H, pyridine–CH), 5.3–4.8 (m, 1H, COOCH), 3.9 (d, 2H, COOCH₂), 3.65–3.45 (2d, 2H, CH₂Cl), 2.3 (s, 6H, 2,6 CH₃s), 2.3–1.7 (m, 1H, COO–C–CH), 1.3–1.1 (2d, 3H, COO–C–CH₃), 0.85–0.8 (2d, 6H, gem-CH₃s).

6.7.10. 2-Chloroethyl 2-propoxyethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate **6l**

Same procedure as for **6a**. Yield 70% (after column chromatography, eluting with CHCl₃–EtOAc gradient, 100:0 to 97:3) m.p. 104–106 °C (i-PrOH or CCl₄). Anal. $C_{22}H_{27}ClN_2O_7$ (C, H, N, Cl). 1 H-NMR (CDCl₃): 8.4–7.3 (m, 4H, aromatics), 6.3 (s, 1H, NH), 5.2 (s, 1H, CH), 4.5–4.1 (m, 4H, 2 COOCH₂), 3.9–3.5 (m, 4H, CH₂OCH₂), 3.45 (t, 2H, CH₂Cl), 2.4 (s, 6H, 2.6 CH₃s), 2.0–1.3 (m, 2H, O–C–CH₂–C), 0.95 (t, 3H, O–C–C–CH₃).

6.8. Preparation of intermediates 10 (table VI, figures 3 and 4)

6.8.1. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-propanol 10a

0.011 mol (0.63 g) of propylene oxide was added to a solution of 0.01 mol (2.25 g) of *N*-methyl-3,3-diphenylpropylamine [41] in 6 mL of MeOH and the reaction mixture was kept at 15–20 °C in a plugged round bottomed flask for 3 days. An additional amount of propylene oxide (0.11 g) was added and the mixture was kept in the same manner for 24 h. The solvent was evaporated in vacuo and the residue was purified by flash chromatography on silica gel eluting with CHCl₃–MeOH (100:0 to 95:5) gradient mixture, to give 2 g (70%) of the pure oily compound. The analytical sample was obtained after drying at 40 °C/0.5 mmHg. Anal. C₁₉H₂₅NO (C, H, N). ¹H-NMR (CDCl₃): 7.2 (s, 10H, aromatics), 3.95 (t, 1H, CH–C–C), 3.65 (m, 1H, CH–O), 3.6 (s, 1H, OH), 2.6–1.8 (m, 9H, NCH₃ and 3 CH₂s), 1.05 (d, 3H, C–CH₃).

6.8.2. 1,N-(3,3-Diphenylpropyl)amino-2-methyl-2-propanol-HCl **10b**

A mixture of 0.02 mol (4.23 g) of 3,3-diphenylpropylamine, 0.005 mol (0.54 g) of 1-chloro-2-methyl-2-propanol and 5 mL of xylene was stirred at reflux temperature for 8 h. After cooling to room temperature, the suspension was filtered, the filtrate was evaporated to dryness and the oily residue was purified by flash chromatography eluting with a CHCl₃–MeOH, 85:15 mixture to give 1.37 g of the pure base. This was converted into its HCl salt that was crystallized from a EtOAc–EtOH, 3:1 mixture to give 1.13 g (71%) of the compound. M.p. 199–200 °C. Anal. $C_{19}H_{25}NO$ +HCl (C, H, N, Cl). ¹H-NMR (DMSO- d_6): 9.5–9.0 (m, 1H, *NH), 7.70–7.2 (m, 10H, aromatics), 5.35 (bs, 1H, OH), 4.25 (t, 1H, CH), 3.15–2.5 (m, 4H, CH₂CH₂N), 2.29 (bs, 2H, N–CH₂–C–O), 1.3 (s, 6H, gem-CH₃s).

6.8.3. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-methyl-2-propanol 10c

A mixture of 0.2 mol (45 g) of N-methyl-3,3-diphenylpropylamine, 0.08 mol (8.68 g) of 1-chloro-2-methyl-2-propanol and

Table VI. N-(Hydroxyalkyl) diphenylalkylamines 10.

$$\begin{array}{c|c}
R_2 & C_6H_5 \\
HO \cdot Alk - N & C_6H_5
\end{array}$$

Compound	Alk	R_1	R ₂	Yield (%)	M.p. or b.p. (°C)/mmHg	Anal.
10a	-CH(CH ₃)CH ₂ -	CH_3	Н	70	Oil	C, H, N
10b	-C(CH ₃) ₂ CH ₂	Н	Н	71	199–200 ^a	C, H, N, Cl
10c	-C(CH ₃) ₂ CH ₂ -	CH_3	Н	80	145/0.2	C, H, N
10d	-CH(CH ₃)(CH ₂) ₂ -	CH_3	Н	83	Thick oil	C, H, N
10e	$-C(CH_3)_2(CH_2)_2-$	CH_3	Н	56	194–196 ^a	C, H, N, Cl
10f	-CH ₂ C(CH ₃) ₂ CH ₂ -	CH_3	Н	65	147–148 ^a	C, H, N, Cl
10g	-(CH ₂) ₂ C(CH ₃) ₂ -	CH_3	Н	99	167–168 ^a	C, H, N, Cl
10h	-C(CH ₃) ₂ CH ₂ -	CH ₃	=O	83	88–89	C, H, N

^aAs HCl salt.

70 mL of xylene was stirred at reflux temperature for 8.5 h. After cooling to room temperature, 450 mL of Et₂O was added, the suspension was filtered and the filtrate was evaporated to dryness. The oily residue was purified by flash chromatography on silica gel eluting with CHCl₃–MeOH (100:0 to 90:10) gradient mixture to give 19 g (80%) of the pure compound. A sample was distilled to give the analytical sample. B.p. 145 °C/0.2 mmHg. Anal. $C_{20}H_{27}NO$ (C, H, N). ¹H-NMR (CDCl₃): 7.15 (s, 10H, aromatics), 3.9 (t, 1H, CH), 2.8 (bs, 1H, OH), 2.8–1.9 (m, 4H, CH₂CH₂N), 2.3 (s, 3H, NCH₃), 2.2 (s, 2H, N-CH₂-C-O), 1.05 (s, 6H, gem-CH₃s).

6.8.4. 4-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-butanone• HCl 13

0.045 mol (3.3 g) of 95% methyl vinyl ketone was dropped in 20 min into a stirred solution of 0.035 mol (7.87 g) of *N*-methyl-3,3-diphenylpropylamine in 7 mL of Et₂O at -5/+3 °C. Afterwards, the solvent was evaporated at room temperature to give 9.2 g (90%) of the pure base. A sample was converted to its HCl salt that was crystallized to give the analytical sample. M.p. 133–135 °C (Me₂CO or *i*-PrOH or MeCOEt). Anal. C₂₀H₂₅NO•HCl (C, H, N, Cl). ¹H-NMR (CDCl₃): 13.3–12.5 (bs, 1H, ⁺NH), 7.3 (s, 10H, aromatics), 4.0 (t, 1H, CH), 3.4–2.9 (m, 4H, CH₂NCH₂), 2.9–2.4 (m, 4H, CH₂–C–N–C–CH₂), 2.7 (s, 3H, NCH₃), 2.15 (s, 3H, COCH₃).

6.8.5. 4-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-butanol **10d**

0.024 mol (0.9 g) of NaBH₄ was added in small portions and at 0 °C into a solution of 0.031 mol (9.16 g) of **13** in 30 mL of MeOH. At the end of the addition (about 5 min), the solvent

was evaporated at reduced pressure, the residue was treated with H_2O (100 mL) and extracted with Et_2O . The organic phase was dried over anhydrous Na_2SO_4 , filtered and evaporated to dryness to give 9.28 g of the oily product, that was dried in vacuo (about 0.4 mmHg at room temperature) to give 7.73 g (83%) of the pure compound. Anal. $C_{20}H_{27}NO$ (C, H, N). 1H -NMR (CDCl₃): 7.35–7.0 (m, 10H, aromatics), 5.6–5.2 (m, 1H, OH), 4.05–3.6 (m, 2H, 2 x CH), 2.6–1.9 (m, 9H, CH₂CH₂N(CH₃)CH₂), 1.55–1.15 (m, 2H, N–C–CH₂–C–O), 1.1 (d, 3H, CH₃–C–O).

6.8.6. 4-[N-(3,3-Diphenylpropyl-N-methylamino]-2-methyl-2-butanol+HCl 10e

A solution of 0.051 mol (7.23 g) of methyl iodide in 6 mL of anhydrous Et₂O (distilled from LiAlH₄) was slowly dropped (30 min) into a mixture of 0.051 mol (1.24 g) of Mg, 10 mg of I₂ and 5 mL of anhydrous Et₂O. Then, the mixture was heated at reflux temperature for 15 min until complete Mg dissolution and, after cooling to -5 °C, a solution of 0.042 mol (12.5 g) of 13 in 45 mL of anhydrous Et₂O was added dropwise in 25 min, without exceeding the temperature of 10 °C. After 18 h stirring at room temperature, the mixture was cooled, 10 mL of H₂O, 150 mL of EtOAc and 4.5 mL of 50% AcOH were added until complete dissolution. After separation of the organic layer, the aqueous phase was re-extracted with EtOAc and the collected organic layers were washed with 5% aqueous Na₂CO₃ solution followed with brine. The residue obtained from EtOAc evaporation was purified by flash chromatography, eluting with a CHCl₃-MeOH, 98:2 mixture, to give 7.4 g (56%) of the pure base. A sample was converted into its *HCl salt to give the analytical sample. M.p. 194-196 °C (i-PrOH). Anal. $C_{21}H_{29}NO$ -HCl (C, H, N, Cl). ¹H-NMR (DMSO- d_6): 12.5–11.0 (bs, 1H, +NH), 7.5 (s, 10H, aromatics), 4.7 (bs, 1H, OH), 4.4–4.0 (m, 1H, CH), 3.8–2.3 (m, 6H, CH₂CH₂NCH₂), 2.75 (s, 3H, NCH₃), 2.0–1.5 (m, 2H, CH₂C–O), 1.15 (s, 6H, gem-CH₃s).

6.8.7. 2,2-Dimethyl-3-[N-(3,3-diphenylpropyl)-N-methylamino]-propanol•HCl 10f

A mixture of 0.01 mol (2.61 g) of *N*-methyl-3,3-diphenyl-propylamine-HCl, 0.011 mol (0.9 mL) of 37% HCHO and 1 mL of Ac₂O was stirred at 100 °C for 30 min. A solution of 0.012 mol (1.08 mL) of *i*-butyraldehyde in 1 mL of Ac₂O was dropped at the same temperature and heating was continued for additional 30 min. The solvent was almost completely distilled at 50 °C (1 mmHg), the residue was dissolved in H₂O and the solution was alkalinized and extracted with Et₂O. The crude obtained after solvent evaporation was purified by flash chromatography eluting with CH₂Cl₂-MeOH (100:3 to 100:4) gradient mixture to give 1.55 g (50%) of pure 3-[*N*-(3,3-diphenylpropyl)-*N*-methylamino]-2,2-dimethylpropionaldehyde. ¹H-NMR (CDCl₃): 9.5 (s, 1H, CHO), 7.3 (s, 10H, aromatics), 4.0 (t, 1H, CH), 2.7–1.9 (m, 9H, 3 CH₂s and NCH₃), 1.0 (s, 6H, gem-CH₄s).

0.065 mol (0.25 g) of NaBH₄ was added at 0/3 °C to a stirred solution of 0.005 mol (1.5 g) of the above aldehyde in 7 mL of MeOH. The mixture was stirred for 30 min at the same temperature and for 1 h at room temperature. The reaction could be monitored by TLC (toluene–Me₂CO, 7:3). 35 mL of H₂O was then added and the mixture was extracted with Et₂O. The organic phase was extracted with a solution of 0.6 g of oxalic acid in 25 mL of H₂O, the aqueous solution was washed twice with Et₂O, alkalinized with 1 mL of concentrated NaOH to give the base that was extracted with Et₂O. After drying and evaporation of the solvent, 1.38 g (80%) of the pure oily base was obtained. This was converted into its HCl salt that was crystalized from Me₂CO to give 1.26 g (65%) of **10f**. M.p. 147–148 °C. Anal. C₂₁H₂₉NO•HCl (C, H, N, Cl). ¹H-NMR (CDCl₃): 10.8–9.9 (m, 1H, †NH), 7.7–7.2 (m, 10H, aromatics), 5.0–4.4 (m, 1H, OH), 4.1 (t, 1H, CH), 3.7 (s, 2H, CH₂O), 3.5–2.5 (m, 9H, CH₂CH₂N(CH₃)CH₂), 1.1 (s, 6H, gem-CH₃s).

6.8.8. Ethyl 3-[N-(3,3-diphenylpropyl)amino]-3-methylbuty-rate•HCl 15

A mixture of 0.088 mol (11.27 g) of ethyl 3-methylcrotonate **14** [42], 0.08 mol (17.43 g) of 3,3-diphenylpropylamine and 60 mL of EtOH was refluxed for 57 h. The reaction was monitored by GLC, that showed a 50% maximum rate of **15** formation. The mixture was evaporated to dryness in vacuo and the residue was purified by flash chromatography eluting with CHCl₃-CH₃OH (100:0 to 98:2) gradient mixture. Yield 9.8 g (36%) as base. A sample was converted into its hydrochloride salt. M.p. 126–130 °C (EtOAc). Anal. C₂₂H₂₉NO₂+HCl (C, H, N, Cl). ¹H-NMR (CDCl₃): 10.0–9.3 (bs, 2H, ⁺NH₂), 7.3 (s, 10H, aromatics), 4.2–4.0 (m, 1H, CH), 4.15 (q, 2H, OCH₂-C), 3.0–2.6 (m, 4H, CH₂CH₂N), 2.7 (s, 2H, CH₂COO), 1.4 (s, 6H, gem-CH₃s), 1.2 (t, 3H, O-C-CH₃).

6.8.9. Ethyl 3-[N-(3,3-diphenylpropyl)-N-methylamino]-3-methylbutyrate **16**

A mixture of 0.036 mol (12.35 g) of **15**, 0.04 mol (5.7 g) of methyl iodide, 0.0547 mol (7.56 g) of anhydrous K_2CO_3 and 48 mL of anhydrous DMF (dried on 4 Å molecular sieves) was stirred at room temperature for 6 h. Afterwards, the mixture was poured into 350 mL H_2O and the separated oil was extracted with Et_2O (4 x 70 mL). The residue obtained after solvent evaporation was purified by flash chromatography

eluting with a petroleum ether–Me₂CO, 95:5 mixture. Yield 9.6 g (74%). A sample was distilled to give the analytical sample; b.p. 190–195 °C/0.7 mmHg. Anal. $C_{23}H_{31}NO_2$ (C, H, N). ¹H-NMR (CDCl₃): 7.35 (s, 10H, aromatics), 4.15 (q, 2H, COOCH₂), 4.2–3.9 (m, 1H, CH), 2.4–2.15 (m, 6H, CH₂CH₂N–C–CH₂), 2.25 (s, 3H, NCH₃), 1.25 (t, 3H, COO–C–CH₃), 1.1 (s, 6H, gem-CH₃s).

6.8.10. 3-[N-(3,3-Diphenylpropyl)-N-methylamino]-3-methyl-butanol•HCl 10g

A solution of 0.017 mol (6 g) of **16** in 20 mL of Et₂O (distilled from LiAlH₄) was dropped in 15 min into a stirred suspension of 0.0255 mol (0.97 g) of LiAlH₄ in 20 mL of Et₂O, mantaining a gentle reflux. After 3 h at 25 °C, 1 mL of H₂O, 1 mL of 35% NaOH and 3 mL of H₂O were cautiously added and the mixture was stirred for 15 min. The suspension was filtered, washed with Et₂O and the solvent was evaporated to dryness to give 5.25 g (99%) of **10g** base. A sample of this thick oil was converted into its HCl salt to give the analytical sample. M.p. 167–168 °C (Me₂CO). Anal. C₂₁H₂₉NO·HCl (C, H, N, Cl). ¹H-NMR (CDCl₃): 11.0–10.5 (bs, 1H, ⁺NH), 7.55 (s, 10H, aromatics), 5.3–5.0 (bs, 1H, OH), 4.4–3.8 (m, 3H, CH and CH₂O), 3.0–2.5 (m, 4H, CH₂CH₂N), 2.8 (s, 3H, NCH₃), 2.1–1.8 (m, 2H, N–C–CH₂–C–O), 1.6–1.3 (m, 6H, gem-CH₃s).

6.8.11. 3,3-Diphenyl-N-(2-hydroxy-2-methylpropyl)-N-methylpropanamide 10h

A solution of 0.05 mol (12.2 g) of 3,3-diphenylpropionyl chloride [43] in 30 mL of 1,4-dioxane was added at 30–35 °C to a stirred solution of 0.05 mol (5.15 g) of 1-methylamino-2-methyl-2-propanol [44] in 0.0525 mol (25 mL) of 2.1 N NaOH. The mixture was stirred at room temperature for 3 h and then poured into 200 mL of H₂O kept at 5–10 °C. The precipitate was extracted with 200 mL of Et₂O, the ethereal solution evaporated to dryness and the residue redissolved in CHCl₃. This solution was dried (CaCl₂), filtered, evaporated to dryness and the residue was washed repeatedly with petroleum ether to give 12.9 g (83%) of the pure compound. A little amount was crystallized from cyclohexane to give the analytical sample. M.p. 88–89 °C. Anal. C₂₀H₂₅NO₂ (C, H, N). ¹H-NMR (CDCl₃): 7.2 (s, 10H, aromatics), 4.7 (t, 1H, CH), 3.9 (s, 1H, OH), 3.3 (s, 2H, NCH₂), 3.05 (d, 2H, CH₂CO), 3.0 (s, 3H, NCH₃), 1.0 (s, 6H, gem-CH₃s).

6.9. Preparation of intermediates 11 (table VII)

6.9.1. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-propyl acetoacetate **11a**

0.084 mol (7 g) of diketene was dropped at 95 °C into a stirred solution of 0.08 mol (22.67 g) of 1-[*N*-(3,3-diphenylpropyl)-*N*-methylamino]-2-propanol **10a** in 22 mL of toluene. After cooling to room temperature, the solvent was evaporated in vacuo and the residue was purified by flash chromatography eluting with EtOAc to give 20 g (68%) of pure compound containing about 10% of the enolic form. The analytical sample was obtained by repeating flash chromatography. Anal. C₂₃H₂₉NO₃ (C, H, N). ¹H-NMR (CDCl₃): 7.1 (s, 10H aromatics), 5.15–4.7 (m, 1.1H, CH–O and enolic CHCOO), 4.1–3.8 (m, 1H, N–C–C–CH), 3.3 (s, 1.8H, CH₂COO), 2.55–1.8 (m, 12H, NCH₃, CH₂NCH₂CH₂, CH₃CO), 1.2 (d, 3H, COO–C–CH₃).

6.9.2. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-methyl-2-propyl acetoacetate 11b

0.046 mol (3.8 g) of diketene was dropped in 10 min at 85-100 °C into a stirred solution of 0.044 mol (13.1 g) of

Table VII. *N*-(3,3-Diphenylpropyl)methylaminoalkyl acetoacetates **11**.

Compound	Alk	Yield	M.p. (°C)	Anal.
11a	-CH(CH ₃)CH ₂ -	68	Oil	C, H, N
11b	-C(CH ₃) ₂ CH ₂ -	72	Oil	C, H, N

1-[N-(3,3-diphenylpropyl)-N-methylamino]-2-methyl-2-propanol 10c in 10 mL of toluene. After 2 h stirring at 80 °C, the mixture was cooled to room temperature, the solvent was evaporated in vacuo and the residue was purified by flash chromatography, eluting with CHCl₃-Me₂CO (100:0 to 98:2) gradient mixture, to give 12.3 g (72%) of the ester. Anal. $C_{24}H_{31}NO_{3}$ (C, H, N). H-NMR (CDCl₃): 7.35 (s, 10H, aromatics), 4.0 (t, 1H, CH), 3.2 (s, 2H, COCH₂), 2.55 (s, 2H, COO-C-CH₂), 2.55-2.1 (m, 4H, N-CH₂CH₂), 2.3 (s, 3H, NCH₃), 2.2 (s, 3H, CH₃CO), 1.45 (s, 6H, gem-CH₃s).

6.10. Preparation of intermediates 12 (table VIII)

6.10.1. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-propyl 2-(3-nitrobenzylidene)acetoacetate•HCl 12a

A mixture of 0.01 mol (1.51 g) of 3-nitrobenzaldehyde and 0.01 mol (3.67 g) of 1-[N-(3,3-diphenylpropyl)-N-methylamino]-2-propyl acetoacetate **11a** in 14.5 mL of CHCl₃ was saturated with HCl at 0 °C. After 3 days at 15 °C, the mixture was diluted with CHCl₃, washed with diluted NaOH until neutrality and the organic phase dried over CaCl₂. The residue obtained after solvent evaporation was dissolved in Et₂O and an excess of 3.2 N HCl in Et₂O was added at 0 °C. The precipitate obtained after Et₂O addition was decanted and washed repeatedly with Et₂O to give 4.3 g (80%) of the product as E/Z isomers mixture of the HCl salt as a glassy solid. Anal. C₃₀H₃₂N₂O₃-HCl (C, H, N, Cl). ¹H-NMR (CDCl₃): 8.35 and 8.2 (2s, 1H, CH–C–CO), 8.0–6.9 (m, 14H, aromatics), 5.8–5.2 (m, 1H, COOCH), 4.2–3.8 (m, 1H, N–C–C–CH), 3.6–2.2 (m, 12H, CH₂N(CH₃)CH₂CH₂ and CH₃CO), 1.4 and 1.2 (2d, 3H, COO–C–CH₃).

6.10.2. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-methyl-2-propyl 2-(3-nitrobenzylidene)acetoacetate 12b

Same procedure as for 12a, but using 11b. The analytical sample was obtained by treatment of the hydrochloride salt with diluted NaOH, extraction with EtOAc and purifing the crude base by flash chromatography eluting with a CHCl₃–EtOAc, 95:5 mixture. Yield 91%, m.p. 65–80 °C. Anal. C₃₁H₃₄N₂O₅ (C, H, N). ¹H-NMR (CDCl₃): 8.5–8.2 (m, 2H, aromatics at positions 2,4 of C₆H₄NO₂), 8.0–7.5 (m, 3H, aromatics at positions 5,6 of C₆H₄NO₂ and CO-C-CH), 7.3 (s, 10H, other aromatics), 4.1–3.8 (m, 1H, N-C-C-CH), 2.7–2.1 (m, 12H, CH₂N(CH₃)CH₂CH₂ and COCH₃), 1.52 and 1.48 (2s, 6H, gem-CH₃s).

6.10.3. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-propyl 2-(2,3-dichlorobenzylidene)acetoacetate 12c

A mixture of 0.01 mol (3.67 g) of 1-[N-(3,3-diphenylpropyl)-N-methylamino]-2-propyl acetoacetate 11a, 0.01 mol

(1.75 g) of 2,3-dichlorobenzaldehyde in 12 mL of CHCl $_3$ was saturated with HCl at 0 °C. After 1 day at room temperature, the solvent was evaporated to dryness, the residue was dissolved into CH $_2$ Cl $_2$ and the solution was neutralized by washing with diluted NaHCO $_3$ aqueous solution. Evaporation of the organic layer gave 4.88 g (93%) of the compound as a glassy solid as E/Z isomers mixture. Anal. C $_3$ OH $_3$ (Cl $_2$ NO $_3$ (C, H, N, Cl). 1 H-NMR (CDCl $_3$): 7.9 and 7.8 (2s, 1H, CO-C-CH), 7.7-7.0 (m, 13H, aromatics), 5.4-4.8 (m, 1H, COOCH), 4.3-3.8 (m, 1H, N-C-C-CH), 2.8-1.9 (m, 12H, CH $_2$ N(CH $_3$)CH $_2$ CH $_2$ and CH $_3$ CO), 1.25 and 1.1 (2d, 3H, COO-C-CH $_3$).

6.10.4. 1-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-methyl-2-propyl 2-(2,3-dichlorobenzylidene)acetoacetate•HCl 12d

Same procedure as for **12c**, but using **11b**. The residue after CHCl₃ evaporation was treated with *i*-Pr₂O until solidification. The solid was washed with a *i*-Pr₂O-EtOAc, 95:5 mixture and dried in desiccator to give the hydrochloride salt as a glassy solid. Yield 100%. Anal. C₃₁H₃₃Cl₂NO₃·HCl (C, H, N, Cl). ¹H-NMR (CDCl₃): 10.8 (bs, 1H, ⁺NH), 7.9–7.6 (m, 1H, CO-C-CH), 7.55–7.0 (m, 13H, aromatics), 4.2–3.7 (m, 1H, N-C-C-CH), 3.6–2.0 (m, 12H, CH₂N(CH₃)CH₂CH₂ and CH₃CO), 1.6 and 1.5 (2s, 6H, gem-CH₃s).

6.11. General procedure for the synthesis of 1,4-dihydropyridines **9** (table 1)

6.11.1. Method A

A mixture of the monohaloalkyl ester of general formula 6 (0.02 mol), a diphenylalkylamine 8 (0.04–0.06 mol) and toluene or xylene (15–30 mL) was stirred at reflux temperature for 1–24 h. After cooling to room temperature, the mixture was diluted with $\rm E_{\rm 2}O$ in order to precipitate the formed 8-HCl. The filtrate was evaporated in vacuo and the residue was purified by 1-4-1-5 has chromatography. The purified base was converted into its 1-4-1-6 has the by usual methods; the product was isolated as amorphous material or washed or crystallized from a suitable solvent or solvents mixture. The following compounds were synthesized by this route.

6.11.1.1. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate• $HCl•H_2O$ 9a: m.p. 118–125 °C (EtOAc or Me₂CO); Anal. $C_{34}H_{37}N_3O_6•HCl•H_2O$ (C, H, N, Cl, H_2O); ^1H-NMR (DMSO- 4G_6): 11.3–10.0 (bs, 1H, ^+NH), 9.45 (s, 1H, pyridine-NH), 8.0–7.3 (m, 14H, aromatics), 5.65 (s, 1H, pyridine- 4H_4), 4.7–3.9 (m, 3H, N-C-C-CH and COOCH₂), 3.65 (s, 3H, COOCH₃), 2.75 (s, 3H, NCH₃), 2.4 (s, 6H, 2,6 CH₃s), 3.7–2.2 (m, 8H, CH₂NCH₂CH₂ and 4H_2O).

6.11.1.2. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl 9b: m.p. 108–113 °C (amorphous); Anal. C₃₄H₃₇N₃O₆•HCl (C, H, N, Cl); ¹H-NMR (CDCl₃): 12.3 (bs, 1H, †NH), 8.0 (s, 1H, pyridine–NH), 8.1–7.0 (m, 14H, aromatics), 5.0 (s, 1H, pyridine–H₄), 4.48 (m, 2H, COOCH₂), 3.98 (m, 1H, N–C–C–CH), 3.6 (s, 3H, COOCH₃), 3.4–2.2 (m, 6H, CH₂NCH₂CH₂), 2.69 (s, 3H, NCH₃), 2.39 (s, 6H, 2,6 CH₃s).

6.11.1.3. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]ethyl methyl 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate•HCl•0.6H₂O 9c: m.p. 161 °C (EtOH + Et₂O); Anal. C₃₄H₃₆Cl₂N₂O₄+HCl•0.6 H₂O (C, H, N, Cl, H₂O); ¹H-NMR (CDCl₃): 7.85 (bs, 1H, pyridine–NH), 7.4–6.8 (m, 13H, aromatics), 5.2 (s, 1H, pyridine–H₄), 4.5–4.1 (m, 2H,

Table VIII. N-(3,3-Diphenylpropyl)methylaminoalkyl 2-arylideneacetoacetates 12.

Compound	Ar	Alk	Yield	M.p. (°C)	Anal.
12a	3-NO ₂ -C ₆ H ₄	-CH(CH ₃)CH ₂ -	80 ^a	Glassy	C, H, N, Cl
12b	$3-NO_2-C_6H_4$	-C(CH ₃) ₂ CH ₂ -	91	65-80	C, H, N
12c	$2,3-Cl_2-C_6H_3$	-CH(CH ₃)CH ₂ -	93	Glassy	C, H, N, Cl
12d	2,3-Cl ₂ -C ₆ H ₃	-C(CH ₃) ₂ CH ₂ -	100 ^a	Glassy	C, H, N, Cl

^aAs HCl salt.

COOCH₂), 4.0–3.7 (m, 1H, N–C–C–CH), 3.5 (s, 3H, COOCH₃), 2,45 (s, 3H, NCH₃), 2.3 (s, 6H, 2,6 CH₃s), 3.3–2.1 (m, 7H, CH₂NCH₂CH₂ and H₂O).

6.11.1.5. 2-[N-(3,3-Diphenylpropylamino)]ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl 9e: m.p. 128–132 °C (i-PrOAc or EtOAc); Anal. C₃₃H₃₅N₃O₆•HCl (C, H, N, Cl); ¹H-NMR (CDCl₃) of the base: 8.55–7.25 (m, 14H, aromatics), 6.55 (s, 1H, pyridine–NH), 5.35 (s, 1H, pyridine–H₄), 4.4–4.0 (m, 3H, COOCH₂ and N–C–C–CH), 3.8 (s, 3H, COOCH₃), 3.0–2.0 (m, 6H, CH₂NCH₂CH₂), 2.45 (s, 6H, 2,6 CH₃s), 1.55 (s, 1H, NH).

6.11.1.6. 2-[N-(4,4-Diphenyl-2-butyl)-N-methylamino]ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl 9f: m.p. 113–120 °C (amorphous); Anal. C₁₅H₃₉N₃O₆•HCl (C, H, N, Cl); ¹H-NMR (CDCl₃): 12.2 (bs, 1H, ⁺NH), 8.3–7.0 (m, 14H, aromatics), 6.8 (bs, 1H, pyridine-NH), 4.9 (bs, 1H, pyridine-H₄), 4.7–4.3 (m, 2H, COOCH₂), 4.2–3.8 (m, 1H, N-C-C-CH), 3.6 (s, 3H, COOCH₃), 3.4–2.8 (m, 4H, O-C-CH₂-N-C-CH₂-C), 2.6 (s, 3H, NCH₃), 2.4 (s, 6H, 2,6 CH₃s), 2.2–1.8 (m, 1H, N-CH-C), 1.6–1.1 (m, 3H, N-C-CH₃).

6.11.1.7. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]ethyl ethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl 9g: m.p. 164–167 °C (Me₂CO); Anal. C₃₅H₃₉N₃O₆-HCl (C, H, N, Cl); 1 H-NMR (DMSO- 4 G): 11.3 (bs. 1H, $^{+}$ NH), 9.35 (bs, 1H, pyridine-NH), 8.0–7.3 (m, 14H, aromatics), 5.0 (s, 1H, pyridine- 1 H₄), 4.5–3.9 (m, 5H, 2 × COOCH₂ and N-C-C-CH), 3.6–2.25 (m, 6H, CH₂NCH₂CH₂), 2.75 (s, 3H, NCH₃), 2.35 (s, 6H, 2,6 CH₃s), 1.2 (t, 3H, COO-C-CH₃).

6.11.1.8. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]ethyl 1-methylethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl 9h: m.p. 160–164 °C (Me₂CO); Anal. C₃₆H₄₁N₃O₆-HCl (C, H, N, Cl); 1 H-NMR (DMSO- d_6): 12.0–11.5 (bs, 1H, +NH), 9.5 (s, 1H, pyridine–NH), 8.3–7.6 (m, 4H, aromatics of 3-nitrophenyl ring), 7.5 (s, 10H, other aromatics) 5.1 (s, 1H, pyridine–H₄), 5.2–4.8 (m, 1H, COOCH), 4.7–4.3 (m, 2H, COOCH₂), 4.3–3.9 (m, 1H, N–C–C–CH), 3.8–2.2 (m, 6H, CH₂NCH₂CH₂), 2.8 (s, 3H, NCH₃), 2.4 (s, 6H, 2,6 CH₃s), 1.25 and 1.15 (2d, 6H, COO–C–(CH₃)CH₃).

6.11.1.9. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]ethyl 2-methylpropyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl 9i: m.p. 123–124 °C (EtOAc or EtOAc + Me₂CO); Anal. C₃₇H₄₃N₃O₆•HCl (C, H, N, Cl); ¹H-NMR (DMSO-d₆): 11.7–11.25 (bs, 1H, †NH), 9.55 (s, 1H, pyridine–NH), 8.35–7.65 (m, 4H, aromatics of 3-nitrophenyl ring), 7.5 (s, 10H, other aromatics), 5.15 (s, 1H, pyridine–H₄), 4.7–4.05 (m, 3H, COOCH₂–C–N and N–C–C–CH), 4.05–3.75 (d, 2H, COOCH₂–C–(C)₂), 3.65–2.25 (m, 6H, CH₂NCH₂CH₂), 2.8 (s, 3H, NCH₃), 2.45 and 2.4 (2s, 6H, 2,6 CH₃s), 2.05–1.65 (m, 1H, COO–C–CH), 1.9 and 0.85 (2d, 6H, COO–C–C(C(CH₃)₂).

6.11.1.10. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]ethyl 2-propoxyethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate+HCl 9j: m.p. 124–129 °C (EtOAc); Anal. $C_{38}H_{45}N_3O_7$ •HCl (C, H, N, Cl); 1H -NMR (DMSO- d_6): 11.8–11.3 (bs, 1H, †NH), 9.5 (s, 1H, pyridine–NH), 8.3–7.7 (m, 4H, aromatics of 3-nitrophenyl ring), 7.45 (s, 10H, other aromatics), 5.1 (s, 1H, pyridine–H₄), 4.7–4.0 (m, 5H, 2 x COOCH₂ and N–C–C–CH), 3.8–3.2 (m, 8H, CH₂NCH₂ and CH₂OCH₂), 3.2–2.3 (m, 2H, N–C–CH₂–C), 2.8 (s, 3H, NCH₃), 2.4 (s, 6H, 2,6 CH₃s), 1.8–1.2 (m, 2H, O–C–CH₂–C), 0.85 (t, 3H, O–C–C–CH₃).

6.11.1.11. 3-[N-(3,3-Diphenylpropyl)-N-methylamino]propyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl 9k: m.p. 100–107 °C (amorphous); Anal. C₃₅H₃₉N₃O₆•HCl (C, H, N, Cl); ¹H-NMR (CDCl₃): 8.0–6.8 (m, 16H, aromatics, ⁺NH and pyridine–NH), 5.0 (s, 1H, pyridine–H₄), 4.2–3.8 (m, 3H, N–C–C–CH and COOCH₂), 3.47 (s, 3H, COOCH₃), 3.1–2.2 (m, 8H, CH₂CH₂NCH₂CH₂), 2.62 (s, 3H, NCH₃), 2.35 (s, 6H, 2,6 CH₃s).

6.11.1.12. 3-[N-(4,4-Diphenyl-2-butyl)-N-methylamino]propyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl 9l: m.p. 113–118 °C ($\rm H_2O$); Anal. $\rm C_{36}H_{41}N_3O_6$ -HCl (C, H, N, Cl); $\rm ^1H$ -NMR (CDCl $_3$): 8.15–7.1 (m, 15H, aromatics and pyridine–NH), 5.05 (s, 1H, pyridine–H $_4$), 4.25–3.8 (m, 3H, N–C–C–CH and COOCH $_2$), 3.61 (s, 3H, COOCH $_3$), 2.6 (s, 3H, NCH $_3$), 2.4 (s, 6H, 2,6 CH $_3$ s), 2.4–1.7 (m, 7H, O–C–CH $_2$ CH $_2$ and NCHCH $_2$), 1.5–1.2 (m, 3H, N–C–CH $_3$).

6.11.1.13. 4-{N-(3,3-Diphenylpropyl)-N-methylamino]butyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl-0.5H₂O 9m: the reaction was carried out in DMF at room temperature for 16 h. M.p. 91–103 °C (amorphous); Anal. C₃₆H₄₁N₃O₆*HCl .0.5H₂O (C, H, N, Cl, H₂O); H-NMR (CDCl₃): 11.6–11.2 (bs, 1H, *NH), 9.3 (s, 1H, pyridine-NH), 8.5–8.1 (m, 4H, aromatics of 3-nitrophenyl ring), 7.35 (s, 10H, other aromatics), 5.05 (s, 1H, pyridine-H₄), 4.2–3.8 (m, 3H, COOCH₂ and N-C-C-CH), 3.6 (s, 3H, COOCH₃), 3.4 (s, 1H, H₂O), 3.3–2.0 (m, 6H, CH₂NCH₂CH₂), 2.8 (s, 3H, NCH₃), 2.35 (s, 6H, 2,6 CH₃s), 1.7–1.4 (m, 4H, O-C-CH₂CH₂).

6.11.1.14. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-I-methylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl 9n: m.p. 114–123 °C (amorphous); Anal. $C_{35}H_{39}N_3O_6$ -HCl (C, H, N, Cl); 1H -NMR (CDCl $_3$): 8.1–7.0 (m, 16H, aromatics, 4NH and pyridine-NH), 5.3 (m, 1H, COOCH), 5.05 and 5.00 (2s, 1H, pyridine- H_4), 4.1–3.5 (m, 1H, N-C-C-CH), 3.6 (s, 3H, COOCH $_3$), 3.5–2.2 (m, 9H, CH $_2N$ (CH $_3$)CH $_2CH_2$), 2.4 (s, 6H, 2,6 CH $_3$ s), 1.6–1.0 (m, 3H, COO-C-CH $_3$).

This compound was also synthesized by *method* B_1 and the diastereoisomers were separated by repeated flash chromatography, eluting with CHCl₃ containing increasing amounts of EtOAc (0 to 50%). In these conditions $9n_2$ base was collected before $9n_1$. Each crude base was dissolved into Et_2O-Me_2CO mixture and HCl in Et_2O was added to the solution. Each hydrochloride salt was collected by filtration and crystallized from EtOAc.

6.11.1.15. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1-methylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl•H₂O 9n, (diastereomer at lower $R_{\rm F}$ in CHCl₃–5 N methanolic NH₃, 99:1 eluent mixture): m.p. 143–147 °C (EtOAc); Anal. $C_{35}H_{39}N_3O_6$ •HCl•H₂O (C, H, N, Cl, H₂O); ¹H-NMR (DMSO- d_6): 11.5–10.0 (bs, 1H, [†]NH), 9.25 (s, 1H, pyridine–NH), 8.2–7.5 (m, 4H, aromatics of 3-nitrophenyl ring), 7.35 (s, 10H, other aromatics), 5.2 (m, 1H, COOCH), 5.05 (s, 1H, pyridine–H₄), 4.0 (m, 1H, N–C–C–CH), 3.55 (s, 3H, COOCH₃), 3.7–3.2 (m, 4H, H₂O and COO–C–CH₂–N), 2.75 (s, 3H, NCH₃), 2.35 (s, 6H, 2,6 CH₃s), 3.2–2.2 (m, 4H, N–CH₂CH₂), 1.05 (d, 3H, COO–C–CH₃).

6.11.1.16. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1-methylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate• $HCl•0.5H_2O$ 9 n_2 (diastereomer at higher R_F in CHCl₃-5 N methanolic NH₃, 99:1 eluent mixture): m.p. 196–198 °C (dec.) (EtOAc); Anal. $C_{35}H_{30}N_3O_6*$ HCl $•0.5H_2O$ (C, H, N, Cl, H_2O); 1H -NMR (DMSO- d_6): 11.0–10.0 (bs, 1H, 1NH), 9.35 (s, 1H, pyridine-NH), 8.1–7.5 (m, 4H, aromatics of 3-nitrophenyl ring), 7.35 (s, 10H, other aromatics), 5.25 (m, 1H, COOCH), 5.0 (s, 1H, pyridine-H₄), 4.0 (m, 1H, N-C-C-CH), 3.6 (s, 3H, COOCH₃), 3.7–3.0 (m, 3H, 1H_2O and COO-C-CH₂-N), 3.0–2.1 (m, 1H_2O CH₃NCH₃N, 1.25 (d, 3H, COO-C-CH₃).

The analysis of the diastereoisomers $9n_1$ and $9n_2$ was performed also by HPLC method, under the following conditions:

Column: Nova-pak C-18 4μ (Waters); 150 x 3.9 mm Mobile phase: CH₃CN (63 vol) – NORMEX buffer pH 7.4 (37 vol)

Elution: isocratic
Flow: 1.2 mL/min
Temperature: Detector: UV (240 nm)
Attenuation: 0.02 AUFS

Under these conditions a good separation was observed: $9\mathbf{n}_1$, $R_T = 11.10$ min and $9\mathbf{n}_2$, $R_T = 11.85$ min.

6.11.1.17. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1-methylethyl 2-methylpropyl 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate-HCl 9r: m.p. 162-164 °C (EtOAc); Anal. C₃₈H₄₄Cl₂N₂O₄-HCl (C, H, N, Cl); ¹H-NMR (CDCl₃): 7.85 (s, 1H, pyridine-NH), 7.6–7.0 (m, 13H, aromatics), 5.6–5.1 (m, 1H, COOCH), 5.35 (s, 1H, pyridine-H₄), 4.2–3.7 (m, 3H, COOCH₂ and N–C–C–CH), 3.6–1.4 (m, 16H, CH₂N(CH₃)CH₂CH₂, 2,6 CH₃s and COO–C–CH), 0.95 (d, 3H, COO–C–CH₃), 0.8 (2d, 6H, COO–C–C(CH₃)₂).

6.11.2. Method B.

A mixture of the appropriate 4-aryl-1,4-dihydropyridine-3-carboxylic acid 7 (0.01 mol), aminoalcohol 10 (0.01 mol), dicyclohexylcarbodiimide (0.011 mol), 4-dimethylaminopyridine (0.0011 mol) and DMF (8.5–20 mL) was stirred under N₂ atmosphere at 75 °C for 8–48 h. After cooling to room temperature the mixture was diluted with Et₂O, the precipitated N,N-dicyclohexylurea was filtered and the filtrate was washed with H₂O. The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated to dryness to give the crude that was purified by flash chromatography. The purified base was converted into •HCl salt by usual methods; the product was obtained as amorphous material, then was washed or crystallized from a suitable solvent or solvent mixtures. The following compound was synthesized by this route.

6.11.2.1. 4-[N-(3,3-Diphenylpropyl)-N-methylamino]-2-butyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl•H₂O 9ab: m.p. 93–110 °C (amorphous); Anal. C₃₆H₄₁N₃O₆•HCl•H₂O (C, H, N, Cl, H₂O); ¹H-NMR (DMSO-d₆): 11.5–10.8 (bs, 1H, ⁺NH), 9.35 (s, 1H, pyridine-NH), 8.3–7.6 (m, 4H, aromatics of 3-nitrophenyl ring), 7.4 (s, 10H, other aromatics), 5.1 (s, 1H, pyridine-H₄), 5.2–4.7 (m, 1H, COOCH), 4.4–3.9 (m, 1H, N-C-C-CH), 3.6 (s, 3H, COOCH₃), 3.5 (s, 2H, H₂O), 3.3–2.2 (m, 6H, CH₂NCH₂CH₂), 2.65 (s, 3H, NCH₃), 2.35 (s, 6H, 2,6 CH₃s), 2.2–1.7 (m, 2H, COO-C-CH₂), 1.4–0.9 (m, 3H, COO-C-CH₃).

6.11.3. Method B₂

A mixture of the appropriate 4-aryl-1,4-dihydropyridine-3-carboxylic acid 7 (0.01 mol), anhydrous CH₂Cl₂ (35 mL) and anhydrous DMF 9 mL) was stirred under N₂ atmosphere at -10 °C and added with SOCl₂ (0.012 mol). After 1 h stirring at 0/5 °C, a solution of the suitable aminoalcohol 10 (0.02 mol) in anhydrous CH₂Cl₂ (10 mL) was dropped into the mixture in about 10 min without exceeding 3 °C. After 3 h at 0 °C, the solvent was evaporated, the residue dissolved in EtOAc and washed repeatedly with brine, 1 N HCl, 10% Na₂CO₃, H₂O. The residue obtained after solvent evaporation was purified by flash chromatography. The purified base was converted into •HCl salt by usual methods; the product was isolated as amor-

phous material or washed or crystallized from a suitable solvent or solvents mixture. The following compounds were synthesized by this route.

- 6.11.3.1. 2-[N-(3,3-Diphenylpropyl)amino]-1,1-dimethylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl 9t: m.p. (118) 130 °C dec. (amorphous); Anal. $C_{35}H_{39}N_3O_6$ •HCl (C, H, N, Cl); ¹H-NMR (DMSO- d_6): 9.55–9.15 (m, 3H, ⁺NH₂ and pyridine–NH), 8.25–7.55 (m, 4H, aromatics of 3-nitrophenyl ring), 7.4 (s, 10H, other aromatics), 5.05 (s, 1H, pyridine–H₄), 4.3–3.9 (m, 1H, N–C–C–CH), 3.6 (s, 3H, COOCH₃), 3.5–3.2 (m, 2H, N–C–CH₂–C), 3.0–2.4 (m, 4H, CH₂NCH₂), 2.35 and 2.3 (2s, 6H, 2,6 CH₃s), 1.42 (s, 6H, COO–C(CH₃)₂).
- 6.11.3.2. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl 9u: m.p. 185–190 °C (EtOH); Anal. $C_{36}H_{41}N_3O_6$ -HCl (C, H, N, Cl); 1H -NMR (DMSO- d_6): 10.8–9.4 (bb, 1H, ^+NH), 9.5 (bs, 1H, pyridine-NH), 8.30–8.05 (m, 2H, 3-nitrophenyl- H_2 - H_4), 7.85–7.60 (m, 2H, 3-nitrophenyl- H_2 - H_4), 7.85–7.60 (m, 2H, 3-nitrophenyl- H_3 - H_6), 7.55–7.20 (m, 10H, other aromatics), 5.05 (s, 1H, pyridine- H_4), 4.15–3.35 (m, 6H, N-C-CH₂-CH, COOCH₃), 3.20–2.15 (m, 13H, CH₂N(CH₃)CH₂ and 2,6 CH₃s), 1.50 (s, 6H, COO-C(CH₃)₂).

This compound was also prepared by method C giving 36% yield, after crystallization from H₂O containing a slight excess of hydrochloric acid.

- 6.11.3.3. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl• $0.5H_2O$ 9 u_1 : m.p. 119–123 °C (H_2O); Anal. $C_{36}H_{41}N_3O_6$ •HCl• $0.5H_2O$ (C, H, N, Cl, H_2O).
- 6.11.3.4. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(4-nitrophenyl)pyridine-3,5-dicarboxylate•N-HCl 9 ν : m.p. 119–121 °C (amorphous); Anal. $C_{36}H_{41}N_{3}O_{6}$ -HCl (C, H, N, Cl); 1 H-NMR (DMSO- d_{6}): 10.1–10.4 (bs, 1H, 1 NH), 9.5 (bs, 1H, pyridine-NH), 8.3 and 7.6 (2dd, 4H, 4-nitrophenyl AA'BB' system), 7.43 (s, 10H, other aromatics), 5.05 (s, 1H, pyridine-H₄), 4.3–3.7 (m, 1H, N-C-C-CH), 3.67 (s, 3H, COOCH₃), 3.0–2.2 (m, 6H, CH₂NCH₂CH₂), 2.75 (s, 3H, NCH₃), 2.4 and 2.3 (2s, 6H, 2,6 CH₃s), 1.5 (s, 6H, COO-C(CH₃)₂).
- 6.11.3.5. 3-[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylpropyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl **9ac**: m.p. 201–203 °C (EtOH); Anal. C₃₇H₄₃N₃O₆•HCl (C, H, N, Cl); ¹H-NMR (DMSO-d₆): 12.0–11.0 (bs, 1H, †NH), 9.4 (bs, 1H, pyridine-NH), 8.2–7.9 (m, 2H, 3-nitrophenyl-H₂–H₄), 7.8–7.5 (m, 2H, 3-nitrophenyl-H₅–H₆), 7.4 (s, 10H, other aromatics), 5.05 (s, 1H, pyridine–H₄), 4.3–3.9 (m, 1H, N–C–C–CH), 3.6 (s, 3H, COOCH₃), 2.7 (s, 3H, NCH₃), 2.35 (s, 6H, 2,6 CH₃s), 3.2–1.9 (m, 8H, CH₂CH₂NCH₂CH₂), 1.35 (bs, 6H, COO–C(CH₃)₂).
- 6.11.3.6. 3-[N-(3,3-Diphenylpropyl)-N-methylamino]-2,2-dimethylpropyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl•0.5H₂O 9ad: m.p. (119) 130–140 °C (amorphous); Anal. C₃₇H₄₃N₃O₆•HCl•0.5H₂O (C, H, N, Cl, H₂O); ¹H-NMR (CDCl₃): 10.5–9.5 (m, 1H, +NH), 8.6–7.2 (m, 15H, aromatics and pyridine-NH), 5.2 (s, 1H, pyridine-H₄), 4.1 (s, 2H, OCH₂), 4.2–3.7 (m, 1H, N–C–C–CH), 3.7 (s, 3H, COOCH₃), 3.2–2.2 (m, 9H, NCH₃ and CH₂NCH₂CH₂).

- 2.5 and 2.4 (2s, 6H, 2,6 CH_3s), 1.2 and 1.0 (2s, 6H, $COO-C-C(CH_3)_2$).
- 6.11.3.8. 3-[N-(3,3-Diphenylpropyl)-N-methylamino]-3,3-dimethylpropyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl•0.5 H_2 O 9af: m.p. 112–117 °C (amorphous); Anal. $C_{37}H_{43}N_3O_6$ •HCl•0.5 H_2 O (C, H, N, Cl, H_2 O); 1H -NMR (DMSO- d_6): 11.2–10.6 (bs, 1 H_1 , +NH), 9.5 (s, 1 H_1 , pyridine-NH), 8.3–8.0 (m, 2 H_1 , 3-nitrophenyl- H_2 - H_4), 7.8–7.6 (m, 2 H_1 , 3-nitrophenyl- H_2 - H_4), 7.45 (s, 10 H_1 , other aromatics), 5.1 (s, 1 H_1 , pyridine- H_4), 4.5–3.9 (m, 3 H_1 , N-C-C-CH and OC H_2), 3.65 (s, 3 H_1 , COOC H_3), 3.55 (s, 1 H_1 , 0.5 H_2 O), 3.2–2.2 (m, 7 H_1 , C H_2 C H_2 N(C H_3)), 2.4 (s, 6 H_1 , 2,6 C H_3 s), 2.2–1.8 (m, 2 H_1 , O-C-C H_2), 1.3 (s, 6 H_1 , N-C(C H_3)₂).
- 6.11.3.9. 2-[N-(3,3-Diphenyl-1-oxopropyl)-N-methylamino]-1,1-dimethylethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate **9ag**: m.p. 158 °C (EtOH 95); Anal. C₃₆H₃₉N₃O₇ (C, H, N); ¹H-NMR (CDCl₃): 8.4–7.2 (m, 14H, aromatics), 6.6 (s, 1H, pyridine–NH), 5.2 (s, 1H, pyridine–H₄), 4.75 (t, 1H, N–C–C–CH), 3.85 (s, 2H, NCH₂), 3.7 (s, 3H, COOCH₃), 3.1 (d, 2H, NCOCH₂), 2.8 (s, 3H, NCH₃), 2,3 (s, 6H, 2,6 CH₃s), 1.2 (s, 6H, COO–C(CH₃)₂).

6.11.4. Method C

A mixture of the appropriate aminoalkyl 2-arylideneaceto-acetate of general formula 12 (0.01 mol), alkyl 3-aminocrotonate 5 (0.01 mol) and *i*-PrOH (10–40 mL) was stirred at reflux temperature for 3–6 h under N_2 atmosphere. After cooling to room temperature the solvent was evaporated and the residue was purified by flash chromatography. When 12 was used as 'HCl salt, the residue was dissolved in a suitable solvent (CH₂Cl₂ or EtOAc) and the solution was washed with 20% Na_2 CO₃ aqueous solution followed by H_2 O. The organic layer was dried, filtered and evaporated to dryness to give the residue for flash chromatography. The following compounds were synthesized by this route.

- 6.11.4.1. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1-methylethyl 1-methylethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•N-HCl (C, H, N, Cl); 1-NMR (CDCl₃): 12.00-11.50 (bs. 1H, 1-NH, 8.4-1-12. (m, 15H, aromatics and pyridine-1NH), 5.6-18. (m, 1H, 1H
- 6.11.4.2. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1-methylethyl 2-propoxyethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl•0.5H₂O **9p**: m.p. 85–92 °C (amorphous); Anal. C₃₉H₄₇N₃O₇•HCl•0.5 H₂O (C, H, N, Cl, H₂O); ¹H-NMR (CDCl₃): 8.2–7.0 (m, 14H, aromatics), 6.0 (s, 1H, pyridine–NH), 5.3–4.6 (m, 1H, COOCH), 5.1 (s, 1H, pyridine–H₄), 4.3–3.7 (m, 3H, N–C–C–CH and COOCH₂), 3.7–3.15 (m, 4H, CH₂OCH₂), 2.6–1.85 (m, 9H, CH₂N(CH₃)-

 CH_2CH_2), 2.3 (s, 6H, 2,6 CH_3 s), 1.75–1.3 (m, 2H, O–C– CH_2 –C), 1.2 and 1.0 (2d, 3H, O–C– CH_3), 0.85 (t, 3H, O–C–C–CH₃).

6.11.4.3. 1,1-Dimethyl-2-propoxyethyl 2-{N-(3,3-diphenylpropyl)-N-methylamino}-1-methylethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-HCl-0.5H₂O 9q: m.p. 86–95 °C (amorphous); Anal. $C_{41}H_{51}N_3O_7$ -HCl-0.5H₂O (C, H, N, Cl, H₂O); 1 H-NMR (CDCl₃): 11.0–10.5 (bs, 1H, †NH), 8.1–7.0 (m, 14H, aromatics), 5.7 (s, 1H, pyridine–NH), 5.2–4.7 (m, 1H, COOCH), 5.0 (s, 1H, pyridine–H}₄), 4.1–3.6 (m, 1H, N–C–C–CH), 3.4 (s, 2H, OCH₂–C–C), 3.25 (t, 2H, OCH₂–C(C)₂), 2.5–1.9 (m, 10H, CH₂N(CH₃)CH₂CH₂ and 0.5H₂O), 2.25 (s, 6H, 2,6 CH₃s), 1.75–1.2 (m, 2H, O–C–CH₂–C), 1.35 (s, 6H, COO–C(CH₃)₂), 1.2 and 1.0 (2d, 3H, COO–C–CH₃), 0.8 (t, 3H, O–C–C–CH₃).

6.11.4.4. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1-methylethyl 2-propoxyethyl 4-(2,3-dichlorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate-MCl 9s: m.p. 108–118 °C (amorphous); Anal. $C_{39}H_{46}Cl_2N_2O_5$ -MCl (C, H, N, Cl); 1H -NMR (CDCl₃): 12.0–11.5 (bs, 1H, ^+NM), 8.0 (s, 1H, pyridine-NH), 7.8–7.1 (m, 13H, aromatics), 5.7–5.3 (m, 1H, COOCH), 5.45 (s, 1H, pyridine-M4), 4.4–3.8 (m, 3H, N-C-C-CH and COOCH₂), 3.8–2.1 (m, 13H, CH₂N(CH₃)-CH₂CH₂ and CH₂OCH₂), 2.4 (s, 6H, 2,6 CH₃s), 1.8–1.2 (m, 5H, COO-C-CH₃ and O-C-CH₂-C), 1.0–0.7 (t, 3H, O-C-C-CH₃).

6.11.4.5. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylethyl ethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-N-HCl 9w (the reaction was carried out in anhydrous DMF at 80 °C for 5 h): m.p. 135–145 °C (EtOAc); Anal. $C_{37}H_{43}N_3O_6$ -HCl (C, H, N, Cl); 1 H-NMR (DMSO- d_6): 11.0–10.0 (bs, 1H, $^+$ NH), 9.45 (s, 1H, pyridine-NH), 8.2–7.6 (m, 4H, aromatics of 3-nitrophenyl ring), 7.4 (s, 10H, other aromatics), 5.0 (s, 1H, pyridine- 1 H $_4$), 4.3–3.8 (m, 3H, N-C-C-CH and COOCH $_2$), 3.8–3.3 (m, 2H, O-C-CH $_2$ -N), 2.4 and 2.3 (2s, 6H, 2,6 CH $_3$ s), 3.2–2.1 (m, 7H, N(CH $_3$)CH $_2$ CH $_2$), 1.45 (s, 6H, COO-C(CH $_3$) $_2$), 1.2 (t, 3H, COO-C-CH $_3$).

6.11.4.6. 2- $[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylethyl 1-methylethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate-<math>HCl-0.5H_2O$ 9x: m.p. 100-115 °C (amorphous); Anal. $C_{38}H_{45}N_3O_6$ - $HCl-0.5H_2O$ (C, H, N, Cl, H_2O); ^1H-NMR (DMSO- d_6): 11.2-10.5 (bs, 1H, 1NH), 9.45-9.25 (s, 1H, pyridine-NH), 8.3-7.6 (m, 4H, aromatics of 3-nitrophenyl ring), 7.45 (s, 10H, other aromatics), 5.05 (s, 1H, pyridine- H_4), 5.2-4.75 (m, 1H, COOCH), 4.2-3.8 (m, 1H, N-C-C-CH), 3.5 (s, 1H, $0.5H_2O$), 3.8-2.0 (m, 6H, $CH_2NCH_2CH_2$), 2.7 (s, 3H, NCH_3), 2.4 and 2.3 (2s, 6H, 2.6 CH $_3$ s), 1.5 (s, 6H, COO-C(CH $_3$)-2).

6.11.4.7. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylethyl 2-propoxyethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate•HCl•0.5H₂O 9y: m.p. 87–92 °C (amorphous); Anal. C₄₀H₄₉N₃O₇•HCl•0.5H₂O (C, H, N, Cl, H₂O); ¹N-NMR (DMSO-d₆): 10.6–10.1 (bs, 1H, ⁺NH), 9.3 (s, 1H, pyridine–NH), 8.2–7.5 (m, 4H, aromatics of 3-nitrophenyl ring), 7.35 (s, 10H, other aromatics), 5.0 (s, 1H, pyridine–H₄), 4.3–3.8 (m, 3H, N–C–C–CH and COOCH₂), 3.8–2.1 (m, 20H, CH₂N(CH₃)CH₂CH₂, 2,6 CH₃s, CH₂OCH₂ and 0.5 H₂O), 1.6–1.2 (m, 8H, O–C–CH₂–C and COO–C(CH₃)₂), 0.8 (t, 3H, O–C–C–CH₃).

6.11.4.8. 1,1-Dimethyl-2-propoxyethyl 2-[N-(3,3-diphenylpropyl)-N-methylamino]-1,1-di-methylethyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)pyridine-3,5-dicarboxylate+ $HCl \cdot 0.5H_2O$ 9z: m.p. 88–92 °C (amorphous); Anal. $C_{42}H_{53}N_3O_7 \cdot HCl \cdot 0.5H_2O$ (C, H, N, Cl, H_2O); 1H -NMR (DMSO- d_6 at 80 °C): 10.5–9.3 (bs, 1H, ^+NH), 9.25 (s, 1H, pyridine-NH), 8.4–7.7 (m, 4H, aromatics of 3-nitrophenyl ring), 7.6 (s, 10H, other aromatics), 5.3 (s, 1H, pyridine- H_4), 4.5–4.1 (m, 1H, N-C-C-CH), 3.8 (s, 3H, COO-C-CH₂-O and 0.5H₂O), 3.6 (t, 2H, COO-C-C-O-CH₂), 2.9 (s, 3H, NCH₃), 2.6 and 2.55 (2s, 6H, 2,6 CH₃s), 3.5–2.3 (m, 6H, CH₂NCH₂CH₂), 1.65 and 1.6 (2s, 12H, 2 COO-C-CH₃)₂), 1.8–1.3 (m, 2H, O-C-CH₂-C), 0.95 (t, 3H, O-C-C-CH₃).

6.11.4.9. 2-[N-(3,3-Diphenylpropyl)-N-methylamino]-1,1-dimethylethyl methyl 4-(2,3-di-chlorophenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylate-HCl-0.75H₂O **9aa**: m.p. 124–140 °C (amorphous); Anal. C₃₆H₄₀Cl₂N₂O₄-HCl-0.75H₂O (C, H, N, Cl, H₂O), ¹H-NMR (DMSO-d₆): 10.7–10.2 (bs, 1H, *NH), 9.35 (s, 1H, pyridine–NH), 7.55 (s, 13H, aromatics), 5.45 (s, 1H, pyridine–H₄), 4.2–3.9 (m, 1H, N–C–C–CH), 3.65 (s, 3H, COOCH₃), 3.5 (s, 1.5H, 0.75H₂O), 3.3–2.1 (m, 9H, CH₂N(CH₃)CH₂CH₂), 3.35 and 3.25 (2s, 2,6 CH₃s), 1.4 (s, 6H, COO–C(CH₃)₂).

6.11.5. Determination of apparent dissociation constant for $9\mathbf{u}$. The apparent dissociation constant (pK_a') of $9\mathbf{u}$ was determined by potentiometric titration according to Albert and Serjeant [45]. 10^{-3} M Ethanolic-aqueous solutions (80:20 to 50:50) of the compound were titrated in a double run with 0.02 N NaOH at 37 °C using a glass-calomel electrode system. Only the pK_a values obtained in the range of 20–80% of titrating solution were taken into account and used to determine the regression line, which gave the extrapolated pK_a' of $9\mathbf{u}$ in pure water. The value found was pK' = 6.83

water. The value found was $pK_a' = 6.83$. By the same method a pK_a' value of 7.05 was obtained for nicardipine, in agreement with the value of 7.0 from the literature [46].

6.11.6. Determination of the partition coefficient for ${\it 9u}$

Log P determination of $\mathbf{9u}$ was carried out at 25 °C in n-octanol-phosphate buffer using a modified procedure based on the shake-flask method [47]. n-Octanol and aqueous phosphate buffers (pH 2.5 and 3) were mutually saturated by stirring equal volumes of each component at 25 °C for 2 h, and the two layers were separated after standing for 1 h.

Isotonic phosphate buffer solutions at pH 2.5 and 3 were prepared using $0.05~M~KH_2PO_4$ solutions adjusted to desired pH by H_3PO_4 addition. A shaking time of 5 min was used, followed by centrifugation at 3000 rpm for 10 min to completely separate the two layers, and the concentration of compound $\bf 9u$ was determined by HPLC on the aqueous phase.

The determinations were made using 10⁻³ M solutions of **9u** base in *n*-octanol and volumetric *n*-octanol/aqueous buffer ratios 1:1 and 1:10 for each pH value. The concentration of compound **9u** in the aqueous layer was quantitated by HPLC using a Waters 3.9 x 300 mm reverse-phase µ-Bondapack C-18 column with UV detection at 240 nm and with MeCN-0.15 M NaClO₄ aqueous solution adjusted to pH 3 by HClO₄ addition (61:39, v/v) as the mobile phase at a flow rate of 1.5 mL/min (isocratic elution at 25 °C).

The distribution coefficient D was calculated from the equation

D = (total concentration - concentration in aqueous layer)

concentration in aqueous layer

Table IX. Results from pharmaco-toxicological screening for 1,4-dihydropyridines 9.

Compound	³ H-Nitrendipine binding,	SHR	Indicative toxic	city, LD ₅₀ (µmol/kg)	
	IC ₅₀ (nM)	ED ₂₅ p.o. (μmol/kg)	i.p. (mouse)	p.o. (mouse)	i.v. (rat)
9a	9.6	16.0	114	396	
9 b	0.4	10.0	200	250	11
9c	7.1	22.0	149	570	
9d	2.6	23.6^{a}	116	275	
9e	1.8	12.0	112	460	
9f	1.5	13.0	270	180	
9g	1.4	5.0 ^a	99	200	
9h	0.6	4.1	77	179	7
9i	1.3	5.1	95	605	16
9j	1.1	10.0	320	3170	18
9k	2.3	5.3	270	400	10
91	7.8	8.0	170	290	
9m	1.0	11.0	150	750	11
9n	1.0	3.5	113	310	7
9n ₁	0.8	3.4	***	510	5
9n ₂	14.0	43.0			32
9 0	3.4	7.4	110	190	11
9p	1.5	6.6	94	75	6
9q	8.0	11.0	375	> 4000	40
9r	4.0	4.9	313	> 770	19
9s	4.5	6.6		1860	10
9t	2.0	8.2	81	312	10
9u	0.5	3.9	114	440	39
9v	380.0	> 154	710	> 4000	39
9w	1.3	3.5 ^a	520		
9x	1.3	11.8	320	4530	39
9y	0.6	5.2	71	515	23
9z	31.6	10.0	132	990	
92 9aa	11.7	12.0	218	> 4000	100
9aa 9ab	1.4	6.6	150	> 4000 230	28
9ac	13.3	49.8	759	> 4000	
9ad	0.45	1.1	739 18	> 4000 89	20
9au 9ae	2.9	5.5	104		38
9ae 9af	20.8			> 4000	
	4.3	18.4	320	> 4000	
9ag Nifodinina		> 160	> 1600	> 4800	<i>5.6</i>
Nifedipine	2.3	18.0 ^a	660	810	56
Nicardipine 'HCl	0.4	14.0	390	890	48
Felodipine Prenylamine lactate	0.2 470.0	16.0 > 100	350	320	22

^aPeak effect at 1 hour after administration.

The partition coefficient was calculated by the formula

 $\log P = \log D - \log \left[\frac{1}{1 + (10^{pKa-pH})} \right]$

and proved to be 6.0-6.1.

6.12. Pharmaco-toxicology

6.12.1. ³[H]nitrendipine binding

Radioreceptor binding studies on 1,4-dihydropyridines binding site in the Ca²⁺ channels were carried out in membranes of rat brain. Male Sprague Dawley rats (200–300 g, Charles River, Italy) were killed by cervical dislocation and brains (minus cerebella) were excised and homogenized (2 x 20 sec) in 50 vol. of cold Tris-HCl buffer pH 7.7, using a Politron homogenizer (speed 7). Homogenates were centrifuged at 1000 g for 10 min and supernatants recentrifuged at 48000 g for 10 min; pellets were resuspended in 50 vol. of the same buffer and centrifuged once more.

The final pellets were suspended in 75 vol. of 50 mM Tris-HCl buffer pH 7.7; membranes were incubated in a final volume of 1 mL for 1 h at 25 °C with 0.2–0.5 nM 3 [H]nitrendipine, in the absence or presence of competing drugs; non-specific binding was determined in the presence of 1 μ M nifedipine.

The incubation was stopped by addition of ice-cold Tris-HCl buffer and rapid filtration through Whatman GF/B. The filters were then washed with ice-cold buffer and the radioactivity retained on the filters was counted by liquid scintillation spectrometry. The inhibition of specific binding of the radioligands by the tested drugs was analyzed to estimate the IC₅₀ value by using the non-linear curve-fitting program Allfit [48].

6.12.2. Effects on blood pressure in Spontaneously Hypertensive Rats (SHR)

Male spontaneously hypertensive rats of the Okamoto Strain, age 12–16 weeks, weighing 250–300 g were obtained from Charles River Italia, Calco, Como. Animals were housed with free access to food and water and maintained under standard conditions of temperature and humidity with a 12 h light–dark cycle, at least for 5 days before the experiment. Systolic arterial pressure (SBP) was non-invasively recorded (tail-cuff method) using a W&W 8006 BP Recorder and a piezoelectric pulse transducer (U. Basile, Italy). The animals were trained to comply unstressfully to the recording procedure for three days before the beginning of the experiment and only those having SBP values over 200 mmHg were used.

Animals were pre-warmed for 15 min at 37 °C before recording SBP. Compounds were dissolved or suspended in an aqueous solution of 0.5% Methocel A4C Premium, and administered by oral gavage in a volume of 5 mL/kg; the effects on blood pressure were monitored at 1, 3, 5 and 7 h after administration. The decrease in SBP recorded at different times were calculated as % changes versus the basal values, and the ED₂₅ values (extrapolated dose inducing 25% decrease of SBP) were evaluated by linear regression analysis at time of peak effect.

6.12.3. Acute toxicity in mice and rats

Female Albino Świss mice (28–34 g), and male Sprague-Dawley rats (180–220 g), obtained from Charles River Italia, Calco, Como, were used. Animals were housed with free access to food and water and maintained on standard conditions of temperature and humidity with a 12 h light-dark cycle, at least for 5 days before the experiment. The acute toxicity of tested compounds in mice was evaluated after intraperitoneal and oral administration, in groups of 3 mice (fasted for 4 h)

at the maximal dose of 2000 mg/kg/30 mL (oral) or 500 mg/kg/20 mL (intraperitoneal). Compounds were dissolved or suspended in an aqueous solution of 0.5% Methocel A4C Premium. When necessary, logarithmic scaled doses of the compounds were administered to different groups of mice. Mortality was recorded for 14 days after the administration. LD_{50} values were evaluated by the method of Weil [49].

Intravenous toxicity in rats was evaluated as reported above. Compounds were dissolved in polypropylene glycol 400-water 1:1 and administered in the caudal vein (1 mL/kg).

Acknowledgements

We would like to thank Mr. R. Cappelletti for obtaining the spectral data for this paper.

References

- [1] Opie L.H., Clinical Use of Calcium Channel Antagonist Drugs, Kluwer, Dordrecht, 1990, pp. 70–131.
- [2] Zanchetti A., Am. J. Cardiol. 59 (1987) 130B-136B.
- [3] Fisher M., Grotta G., Drugs 46 (1993) 961-975.
- [4] Phillips R.A., J. Cardiovasc. Pharmacol. 20 (2) (1993) S55–S62.
- [5] Nayler W.G., Drugs 42 (1991) 21-27.
- [6] Morris A.D., Reid J.L., J. Cardiovasc. Pharmacol. 20 (A) (1992) S25–S32.
- [7] Keogh A.M., Schroeder J.S., J. Cardiovasc. Pharmacol. 16 (6) (1990) S28–S35.
- [8] Janis R.A., Silver P., Triggle D.J., Adv. Drug Res. 16 (1987) 309–591.
- [9] Mannhold R., Drugs of Today 20 (1984) 69-90.
- [10] Kendall H.E., Luscombe D.K., Prog. Med. Chem. 24 (1987) 249–297.
- [11] Bossert F., Meyer H., Weheringer E., Angew. Chem. Int. Ed. Engl. 20 (1981) 762–769.
- [12] Triggle D.J., Langs D.A., Janis R.A., Med. Res. Rev. 9 (1989) 123–180.
- [13] Iwanami M., Shibanuma T., Fujimoto M., Kawai R., Tamazawa K., Takenaka T., Takahashi K., Murakami M., Chem. Pharm. Bull. 27 (1979) 1426–1440.
- [14] Tamazawa K., Arima H., Kojima T., Isomura Y., Okada M., Fujita S., Furuya T., Takenaka T., Inagaki O., Terai M., J. Med. Chem. 29 (1986) 2504–2511
- [15] Muto K., Kuroda T., Kawato H., Karasawa A., Kubo K., Nakamizo N., Arzneim. Forsch. Drug Res. 38 (1988) 1662–1665.
- [16] Meguro K., Aizawa M., Sohda T., Kawamatsu Y., Nagaoka A., Chem. Pharm. Bull. 33 (1985) 3787–3797.
- [17] Osumi S., Morishita S., Wada K., Usui H., Kanda M., Matsui H., Kakeya N., Tohoku J. Exp. Med. 155 (1988) 205–206 [Chem. Abstr. 109 (1988) 183234r].
- [18] Kanno H., Yamaguchi H., Okamiya Y., Sunakawa K., Takeshita T., Naruchi T., Chem. Pharm. Bull. 40 (1992) 2049–2054.
- [19] Godard P., Tillement J.P., Med. Actuelle 4 (1977) 165–172.
- [20] Klein G., Drug Dev. Eval. 11 (1985) 3-23.
- [21] Kasuya Y., Fujie K., Yakugaku Zasshi 78 (1958) 551–553 [Chem. Abstr. 52 (1958) 17196a].
- [22] Donaruma L.G., J. Org. Chem. 26 (1961) 4737-4738.
- [23] Meyer H., Wehinger E., Bossert F., Scherling D., Arzneim. Forsch. Drug Res. 33 (1983) 106–112.
- [24] Braine R., Bull. Soc. Chim. Belg. 63 (1954) 419-423.
- [25] Sato Y., Ger. Offen 2,629,892 [Chem. Abstr. 86 (1977) 189726f].
- [26] Grohe K., Frohberger P.E., Ger. Offen 2,253,027 [Chem. Abstr. 81 (1972) 25653].
- [27] Guarneri L., Angelico P., Ibba M., Poggesi E., Taddei C., Leonardi A., Testa R., Arzneim. Forsch. Drug Res. 46 (1996) 15–24.
- [28] Friebel H. et al., Arch. Exp. Path. Pharmacol. 232 (1958) 419.
- [29] Loev B., Goodman M.M., Snader K.M., Tedeschi R., Macko E., J. Med. Chem. 17 (1974) 956–965.

- [30] Bolger G.T., Gengo P., Klockowski R., Luchowski E., Siegel H., Janis R.A., Triggle A.M., Triggle D.J., J. Pharmacol. Exp. Ther. 225 (1987) 291–309.
- [31] Coburn R.A., Wierzba M., Suto M.J., Solo A.J., Triggle A.M., Triggle D.J., J. Med. Chem. 31 (1988) 2103–2107.
- [32] Sironi G., Montagna E., Greto L., Bianchi G., Leonardi A., Testa R., Arzneim. Forsch. Drug Res. 46 (1996) 145–152.
- [33] Barchielli M., Dolfini E., Farina P., Leoni B., Targa G., Vinaccia V., Tajana A., J. Cardiovasc. Pharmacol. 29 (Suppl. 2) (1997) S1–S15.
- [34] Herbette L.G., Vecchiarelli M., Leonardi A., J. Cardiovasc. Pharmacol. 29 (Suppl. 1) (1997) S19–S24.
- [35] Guarneri L., Sironi G., Angelico P., Ibba M., Greto L., Colombo D., Leonardi A., Testa R., J. Cardiovasc. Pharmacol. 29 (Suppl. 1) (1997) S25-S32.
- [36] Goldmann S., Stoltefuss J., Angew. Chem. Int. Ed. Engl. 30 (1991) 1559–1578.
- [37] 'Focus on Lercanidipine, a New Calcium Antagonist', J. Cardiovasc. Pharmacol. 29 (Suppl. 1) (1997); 'Clinical Profile of Lercanidipine', J. Cardiovasc. Pharmacol. 29 (Suppl. 2) (1997).
- [38] Testa R., Leonardi A., Tajana A., Riscassi E., Magliocca R., Sartani A., Cardiovasc. Drug Res., 15 (1997) 187–219.

- [39] Dal Monte D., Sandri E., Cere W., Ann. Chim. 60 (1970) 801–814.
- [40] Wehinger E., Bossert F., Ger. Offen 2,847,237 [Chem. Abstr. 93 (1977) 150124].
- [41] Bockmuhl M., Stein L., Ger. Offen 925,468 [Chem. Abstr. 52 (1958) 3869e].
- [42] Leonard N.J., Durand D.A., J. Org. Chem. 33 (1968) 1322-1333.
- [43] Pitha J., Hermanek S., Vit J., Coll. Czech Chem. Commun. 25 (1960) 736–742.
- [44] Goldberg S.D., Ringk W.M.F., Spoerri P.E., J. Am. Chem. Soc. (1939) 3562–3564.
- [45] Albert A., Serjeant E.P., The Determination of Ionization Constants, Chapman and Hall, London, 1971.
- [46] Motomura S., Hashimoto K., J. Cardiovasc. Pharmacol. 10 (1987) 627–635.
- [47] Purcell W.P., Bass G.E., Clayton J.M., Strategy of Drug Design: A Guide to Biological Activity, Wiley, 1987, pp. 126–143.
- [48] De Lean A., Munson P.J., Rodbard D., Am. J. Physiol. 235 (1978) E97–E102.
- [49] Weil C.S., Biometrics 8 (1952) 249.